Abstract

We present a wide range of angle- and wavelength-resolved, real-time surface plasmon resonance (SPR) dispersion imaging techniques. Two-dimensional SPR dispersion images were obtained in real time by utilizing a hemicylindrical shaped prism having a high refractive index of 1.72 and a short focal length lens. Our system covers a wide range of incident angles (up to 30) and can detect wavelengths over the whole visible region, allowing us to simultaneously detect the SPR dispersion images produced by air and water substrates (refractive indices of 1 and 1.33, respectively) without scanning or moving the SPR system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Gordon II and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci.  101, 499–506 (1980).
    [CrossRef]
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators A, Phys.  3, 79–88 (1982).
    [CrossRef]
  3. B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance: how it all started,” Biosens. Bioelectron.  10, i (1995).
    [CrossRef] [PubMed]
  4. M. Zangeneh, N. Doan, E. Sambriski, and R. H. Terrill, “Surface plasmon spectral fingerprinting of adsorbed magnesium phthalocyanine by angle and wavelength modulation,” Appl. Spectrosc.  58, 10–17 (2004).
    [CrossRef] [PubMed]
  5. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. Teil A  23, 2135–2136 (1968).
  6. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.  216, 398–410(1968).
    [CrossRef]
  7. S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys .  79, 7383–7385 (1996).
    [CrossRef]
  8. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem.  324, 170–182 (2004).
    [CrossRef]

2004 (2)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem.  324, 170–182 (2004).
[CrossRef]

M. Zangeneh, N. Doan, E. Sambriski, and R. H. Terrill, “Surface plasmon spectral fingerprinting of adsorbed magnesium phthalocyanine by angle and wavelength modulation,” Appl. Spectrosc.  58, 10–17 (2004).
[CrossRef] [PubMed]

1996 (1)

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys .  79, 7383–7385 (1996).
[CrossRef]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance: how it all started,” Biosens. Bioelectron.  10, i (1995).
[CrossRef] [PubMed]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators A, Phys.  3, 79–88 (1982).
[CrossRef]

1980 (1)

J. G. Gordon II and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci.  101, 499–506 (1980).
[CrossRef]

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. Teil A  23, 2135–2136 (1968).

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.  216, 398–410(1968).
[CrossRef]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys .  79, 7383–7385 (1996).
[CrossRef]

Bradberry, G. W.

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys .  79, 7383–7385 (1996).
[CrossRef]

Doan, N.

Ernst, S.

J. G. Gordon II and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci.  101, 499–506 (1980).
[CrossRef]

Gordon, J. G.

J. G. Gordon II and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci.  101, 499–506 (1980).
[CrossRef]

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem.  324, 170–182 (2004).
[CrossRef]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem.  324, 170–182 (2004).
[CrossRef]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys .  79, 7383–7385 (1996).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. Teil A  23, 2135–2136 (1968).

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem.  324, 170–182 (2004).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance: how it all started,” Biosens. Bioelectron.  10, i (1995).
[CrossRef] [PubMed]

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators A, Phys.  3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators A, Phys.  3, 79–88 (1982).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance: how it all started,” Biosens. Bioelectron.  10, i (1995).
[CrossRef] [PubMed]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem.  324, 170–182 (2004).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance: how it all started,” Biosens. Bioelectron.  10, i (1995).
[CrossRef] [PubMed]

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators A, Phys.  3, 79–88 (1982).
[CrossRef]

Otto, A.

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.  216, 398–410(1968).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. Teil A  23, 2135–2136 (1968).

Sambles, J. R.

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys .  79, 7383–7385 (1996).
[CrossRef]

Sambriski, E.

Terrill, R. H.

Zangeneh, M.

Anal. Biochem. (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem.  324, 170–182 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance: how it all started,” Biosens. Bioelectron.  10, i (1995).
[CrossRef] [PubMed]

J. Appl. Phys (1)

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmon band gaps on metallic gratings,” J. Appl. Phys .  79, 7383–7385 (1996).
[CrossRef]

Sens. Actuators A, Phys. (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators A, Phys.  3, 79–88 (1982).
[CrossRef]

Surf. Sci. (1)

J. G. Gordon II and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci.  101, 499–506 (1980).
[CrossRef]

Z. Naturforsch. Teil A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. Teil A  23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.  216, 398–410(1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Stratified model of a gold-coated prism and a sample. ε 2 is a dielectric constant of the medium (in our case, prism) through which the incident beam passes, and ε m is a dielectric constant of the metal. ε 1 and ε 0 are dielectric constants of the sample layers. (b) Schematic diagram of the wide angle-resolved and wavelength-resolved SPR system.

Fig. 2
Fig. 2

(a) Relation between NA and angular range of the incident beam. Here, r is the radius of the parallel incident beam, f is the focal length of the lens, and α is the distance between the focal point and the rim of the lens. (b) Relation between the angle range of the collecting lens (from the central light path of the incident beam) and the NA values of the collecting lens. Δ θ is the angle subtended by the focused beam from the focal point ( Δ θ = 2 θ ).

Fig. 3
Fig. 3

SPR comparison of a BK7 prism ( n = 1.51 ) and an SF10 prism ( n = 1.72 ). All the curves were calculated from Eqs. (1). The horizontal line represents the energy at a 632.8 nm wavelength of the He–Ne laser.

Fig. 4
Fig. 4

Simultaneous SPR dispersion images produced by water and air substrates (refractive indices of 1 and 1.33, respectively) in a fixed setup. Angle- and wavelength-resolved SPR dispersion images of (a) Au–air interface and (b) Au–water interface. The lower graphs show a comparison of the line profile of images at 632.8 nm (red curve) and the graphs calculated from a Fresnel four-phase formula (black curve) in both cases.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k ev = k p sin θ = ω 0 c ε p sin θ , k sp = ω 0 c ε m ε s ε m + ε s ,
k sp = k ev , ε p sin θ = ε m ε s ε m + ε s ,
R = | r 2 m 0 | 2 = | r 2 m + r 1 m 0 exp ( 2 i k m d m ) 1 + r 2 m r 1 m 0 exp ( 2 i k m d m ) | 2 ,
r m 10 = z m 0 i z 31 tan ( k 1 d 1 ) n m 0 i n 31 tan ( k 1 d 1 ) , r 2 m = z 2 m n 2 m , z m 0 = ε 0 k m ε m k 0 , z 2 m = ε m k 2 ε 2 k m , z 31 = ε 1 k 3 ε 3 k 1 , n m 0 = ε 0 k m + ε m k 0 , n 2 m = ε m k 2 + ε 2 k m , n 31 = ε 1 k 3 + ε 3 k 1 , k = ( 2 π λ ) ε 2 sin θ ; k 1 = ( 2 π λ ) 2 ε 1 k 2 , k m = ( 2 π λ ) 2 ε m k 2 , k 3 = k 0 k m k 1 . ε 3 = ε 0 ε m ε 1 .

Metrics