Abstract

The objective is to differentiate noncavitated caries enamel through time-resolved fluorescence and to find excitation and emission parameters that can be applied in future clinical practice for detection of caries lesions that are not clearly visible to the professional. Sixteen human teeth with noncavitiated white-spot caries were selected for this work. Fluorescence intensity decay was measured by using an apparatus based on the time-correlated single-photon counting method. An optical fiber bundle was employed for sample excitation (440nm), and the fluorescence collected by the same bundle (500nm) was registered. The average lifetime for sound enamel was 7.93±0.09, 2.46±0.04, and 0.51±0.02ns, whereas for the carious enamel the lifetimes were 4.84±0.06, 1.35±0.02, and 0.16±0.01ns. It was concluded that it is possible to differentiate between carious and sound regions by time-resolved fluorescence and that, although the origin of enamel fluorescence is still uncertain, the lifetime values seem to be typical of fluorophores like collagen I.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Pretty, “Caries detection and diagnosis: novel technologies,” J. Dent. Res. 34, 727-739 (2006).
    [CrossRef]
  2. S. M Higham, N. Pender, E. J Jong, and P. W. Smith, “Application of biophysical technologies in dental research,” J. Appl. Phys. 105, 102048 (2009).
    [CrossRef]
  3. V. Baelum, J. Heidmann, and B. Nyvad, “Dental caries paradigms in diagnosis and diagnostic research,” Eur. J. Oral Sci. 114, 263-277 (2006).
    [CrossRef] [PubMed]
  4. B. T. Amaechi, “Emerging technologies for diagnosis of dental caries: the road so far,” J. Appl. Phys. 105, 102047(2009).
    [CrossRef]
  5. S. Tranaeus, X-Q. Shi, and B. Angmar-Manssson, “Caries risk assessment: methods available to clinicians for caries detection,” Community Dent. Oral Epidemiol. 33, 265-273(2005).
    [CrossRef] [PubMed]
  6. A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80-C83(2004).
    [CrossRef] [PubMed]
  7. W. Buchalla, “Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions,” Caries Res. 39, 150-156 (2005).
    [CrossRef] [PubMed]
  8. L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
    [CrossRef]
  9. R. R. Alfano and S. S. Yao, “Human teeth with and without dental caries studied by visible luminescence spectroscopy,” J. Dent. Res. 60, 120-122 (1981).
    [CrossRef] [PubMed]
  10. K. König, H. Schneckenburguer, and R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell. Mol. Biol. (Paris) 45, 233-239 (1999).
  11. H. Schneckenburguer and K. Konig, “Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators,” Opt. Eng. 31, 1447-1451 (1992).
    [CrossRef]
  12. Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
    [CrossRef]
  13. L. Marcu, D. Cohen, J. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” Proc. SPIE 3917, 93-101 (2000).
    [CrossRef]
  14. C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
    [CrossRef]
  15. K. Konig, G. Flemming, and R. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell. Mol. Biol. (Paris) 44, 1293-1300 (1998).
  16. D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
    [CrossRef]
  17. A. C. R. Figueiredo, C. Kurachi, and V. S. Bagnato, “Comparison of fluorescence detection of carious dentin for different excitation wavelenghts,” Caries Res. 39, 393-396(2005).
    [CrossRef]

2009 (2)

S. M Higham, N. Pender, E. J Jong, and P. W. Smith, “Application of biophysical technologies in dental research,” J. Appl. Phys. 105, 102048 (2009).
[CrossRef]

B. T. Amaechi, “Emerging technologies for diagnosis of dental caries: the road so far,” J. Appl. Phys. 105, 102047(2009).
[CrossRef]

2007 (1)

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

2006 (3)

V. Baelum, J. Heidmann, and B. Nyvad, “Dental caries paradigms in diagnosis and diagnostic research,” Eur. J. Oral Sci. 114, 263-277 (2006).
[CrossRef] [PubMed]

I. A. Pretty, “Caries detection and diagnosis: novel technologies,” J. Dent. Res. 34, 727-739 (2006).
[CrossRef]

L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

2005 (3)

W. Buchalla, “Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions,” Caries Res. 39, 150-156 (2005).
[CrossRef] [PubMed]

S. Tranaeus, X-Q. Shi, and B. Angmar-Manssson, “Caries risk assessment: methods available to clinicians for caries detection,” Community Dent. Oral Epidemiol. 33, 265-273(2005).
[CrossRef] [PubMed]

A. C. R. Figueiredo, C. Kurachi, and V. S. Bagnato, “Comparison of fluorescence detection of carious dentin for different excitation wavelenghts,” Caries Res. 39, 393-396(2005).
[CrossRef]

2004 (2)

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80-C83(2004).
[CrossRef] [PubMed]

2000 (2)

L. Marcu, D. Cohen, J. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” Proc. SPIE 3917, 93-101 (2000).
[CrossRef]

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

1999 (1)

K. König, H. Schneckenburguer, and R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell. Mol. Biol. (Paris) 45, 233-239 (1999).

1998 (1)

K. Konig, G. Flemming, and R. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell. Mol. Biol. (Paris) 44, 1293-1300 (1998).

1992 (1)

H. Schneckenburguer and K. Konig, “Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators,” Opt. Eng. 31, 1447-1451 (1992).
[CrossRef]

1981 (1)

R. R. Alfano and S. S. Yao, “Human teeth with and without dental caries studied by visible luminescence spectroscopy,” J. Dent. Res. 60, 120-122 (1981).
[CrossRef] [PubMed]

Alfano, R. R.

R. R. Alfano and S. S. Yao, “Human teeth with and without dental caries studied by visible luminescence spectroscopy,” J. Dent. Res. 60, 120-122 (1981).
[CrossRef] [PubMed]

Amaechi, B. T.

B. T. Amaechi, “Emerging technologies for diagnosis of dental caries: the road so far,” J. Appl. Phys. 105, 102047(2009).
[CrossRef]

Angmar-Manssson, B.

S. Tranaeus, X-Q. Shi, and B. Angmar-Manssson, “Caries risk assessment: methods available to clinicians for caries detection,” Community Dent. Oral Epidemiol. 33, 265-273(2005).
[CrossRef] [PubMed]

Bachmann, L.

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Baelum, V.

V. Baelum, J. Heidmann, and B. Nyvad, “Dental caries paradigms in diagnosis and diagnostic research,” Eur. J. Oral Sci. 114, 263-277 (2006).
[CrossRef] [PubMed]

Bagnato, V. S.

A. C. R. Figueiredo, C. Kurachi, and V. S. Bagnato, “Comparison of fluorescence detection of carious dentin for different excitation wavelenghts,” Caries Res. 39, 393-396(2005).
[CrossRef]

Brookes, S. J.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

Buchalla, W.

W. Buchalla, “Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions,” Caries Res. 39, 150-156 (2005).
[CrossRef] [PubMed]

Cohen, D.

L. Marcu, D. Cohen, J. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” Proc. SPIE 3917, 93-101 (2000).
[CrossRef]

Fang, Q

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

Figueiredo, A. C. R.

A. C. R. Figueiredo, C. Kurachi, and V. S. Bagnato, “Comparison of fluorescence detection of carious dentin for different excitation wavelenghts,” Caries Res. 39, 393-396(2005).
[CrossRef]

Flemming, G.

K. Konig, G. Flemming, and R. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell. Mol. Biol. (Paris) 44, 1293-1300 (1998).

Girkin, J.

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

Gomes, A. S. L.

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

Gomes, L.

L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Grundfest, W. S.

L. Marcu, D. Cohen, J. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” Proc. SPIE 3917, 93-101 (2000).
[CrossRef]

Heidmann, J.

V. Baelum, J. Heidmann, and B. Nyvad, “Dental caries paradigms in diagnosis and diagnostic research,” Eur. J. Oral Sci. 114, 263-277 (2006).
[CrossRef] [PubMed]

Hibst, R.

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80-C83(2004).
[CrossRef] [PubMed]

K. König, H. Schneckenburguer, and R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell. Mol. Biol. (Paris) 45, 233-239 (1999).

K. Konig, G. Flemming, and R. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell. Mol. Biol. (Paris) 44, 1293-1300 (1998).

Higham, S. M

S. M Higham, N. Pender, E. J Jong, and P. W. Smith, “Application of biophysical technologies in dental research,” J. Appl. Phys. 105, 102048 (2009).
[CrossRef]

Ito, A. S.

L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Jo, J. A.

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

Jong, E. J

S. M Higham, N. Pender, E. J Jong, and P. W. Smith, “Application of biophysical technologies in dental research,” J. Appl. Phys. 105, 102048 (2009).
[CrossRef]

Kirkham, J.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

Konig, K.

K. Konig, G. Flemming, and R. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell. Mol. Biol. (Paris) 44, 1293-1300 (1998).

H. Schneckenburguer and K. Konig, “Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators,” Opt. Eng. 31, 1447-1451 (1992).
[CrossRef]

König, K.

K. König, H. Schneckenburguer, and R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell. Mol. Biol. (Paris) 45, 233-239 (1999).

Kurachi, C.

A. C. R. Figueiredo, C. Kurachi, and V. S. Bagnato, “Comparison of fluorescence detection of carious dentin for different excitation wavelenghts,” Caries Res. 39, 393-396(2005).
[CrossRef]

Lussi, A.

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80-C83(2004).
[CrossRef] [PubMed]

Maarek, J. I.

L. Marcu, D. Cohen, J. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” Proc. SPIE 3917, 93-101 (2000).
[CrossRef]

Marcu, L.

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

L. Marcu, D. Cohen, J. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” Proc. SPIE 3917, 93-101 (2000).
[CrossRef]

Nyvad, B.

V. Baelum, J. Heidmann, and B. Nyvad, “Dental caries paradigms in diagnosis and diagnostic research,” Eur. J. Oral Sci. 114, 263-277 (2006).
[CrossRef] [PubMed]

Papaioannou, T.

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

Paulus, R.

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80-C83(2004).
[CrossRef] [PubMed]

Pender, N.

S. M Higham, N. Pender, E. J Jong, and P. W. Smith, “Application of biophysical technologies in dental research,” J. Appl. Phys. 105, 102048 (2009).
[CrossRef]

Pretty, I. A.

I. A. Pretty, “Caries detection and diagnosis: novel technologies,” J. Dent. Res. 34, 727-739 (2006).
[CrossRef]

Ribeiro, A. C.

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Robinson, C.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

Rousseau, C.

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

Schneckenburguer, H.

K. König, H. Schneckenburguer, and R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell. Mol. Biol. (Paris) 45, 233-239 (1999).

H. Schneckenburguer and K. Konig, “Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators,” Opt. Eng. 31, 1447-1451 (1992).
[CrossRef]

Shastry, K.

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

Shi, X-Q.

S. Tranaeus, X-Q. Shi, and B. Angmar-Manssson, “Caries risk assessment: methods available to clinicians for caries detection,” Community Dent. Oral Epidemiol. 33, 265-273(2005).
[CrossRef] [PubMed]

Shore, R. C.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

Smith, P. W.

S. M Higham, N. Pender, E. J Jong, and P. W. Smith, “Application of biophysical technologies in dental research,” J. Appl. Phys. 105, 102048 (2009).
[CrossRef]

Strafford, S.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

Tranaeus, S.

S. Tranaeus, X-Q. Shi, and B. Angmar-Manssson, “Caries risk assessment: methods available to clinicians for caries detection,” Community Dent. Oral Epidemiol. 33, 265-273(2005).
[CrossRef] [PubMed]

Vaitha, R.

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

Wood, S. R.

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

Yao, S. S.

R. R. Alfano and S. S. Yao, “Human teeth with and without dental caries studied by visible luminescence spectroscopy,” J. Dent. Res. 60, 120-122 (1981).
[CrossRef] [PubMed]

Zezell, D. M.

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Appl. Spectrosc. Rev. (1)

L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence of biological tissue: a review,” Appl. Spectrosc. Rev. 41, 575-590 (2006).
[CrossRef]

Caries Res. (2)

W. Buchalla, “Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions,” Caries Res. 39, 150-156 (2005).
[CrossRef] [PubMed]

A. C. R. Figueiredo, C. Kurachi, and V. S. Bagnato, “Comparison of fluorescence detection of carious dentin for different excitation wavelenghts,” Caries Res. 39, 393-396(2005).
[CrossRef]

Cell. Mol. Biol. (Paris) (2)

K. Konig, G. Flemming, and R. Hibst, “Laser-induced autofluorescence spectroscopy of dental caries,” Cell. Mol. Biol. (Paris) 44, 1293-1300 (1998).

K. König, H. Schneckenburguer, and R. Hibst, “Time-gated in vivo autofluorescence imaging of dental caries,” Cell. Mol. Biol. (Paris) 45, 233-239 (1999).

Community Dent. Oral Epidemiol. (1)

S. Tranaeus, X-Q. Shi, and B. Angmar-Manssson, “Caries risk assessment: methods available to clinicians for caries detection,” Community Dent. Oral Epidemiol. 33, 265-273(2005).
[CrossRef] [PubMed]

Crit. Rev. Oral Biol. Med. (1)

C. Robinson, R. C. Shore, S. J. Brookes, S. Strafford, S. R. Wood, and J. Kirkham, “The chemistry of enamel caries,” Crit. Rev. Oral Biol. Med. 11, 481-495 (2000).
[CrossRef]

Eur. J. Oral Sci. (1)

V. Baelum, J. Heidmann, and B. Nyvad, “Dental caries paradigms in diagnosis and diagnostic research,” Eur. J. Oral Sci. 114, 263-277 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

B. T. Amaechi, “Emerging technologies for diagnosis of dental caries: the road so far,” J. Appl. Phys. 105, 102047(2009).
[CrossRef]

S. M Higham, N. Pender, E. J Jong, and P. W. Smith, “Application of biophysical technologies in dental research,” J. Appl. Phys. 105, 102048 (2009).
[CrossRef]

J. Biomed. Opt. (1)

D. M. Zezell, A. C. Ribeiro, L. Bachmann, A. S. L. Gomes, C. Rousseau, and J. Girkin, “Characterization of natural carious lesions by fluorescence spectroscopy at 405 nm excitation wavelength,” J. Biomed. Opt. 12, 064013 (2007).
[CrossRef]

J. Dent. Res. (3)

I. A. Pretty, “Caries detection and diagnosis: novel technologies,” J. Dent. Res. 34, 727-739 (2006).
[CrossRef]

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80-C83(2004).
[CrossRef] [PubMed]

R. R. Alfano and S. S. Yao, “Human teeth with and without dental caries studied by visible luminescence spectroscopy,” J. Dent. Res. 60, 120-122 (1981).
[CrossRef] [PubMed]

Opt. Eng. (1)

H. Schneckenburguer and K. Konig, “Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators,” Opt. Eng. 31, 1447-1451 (1992).
[CrossRef]

Proc. SPIE (1)

L. Marcu, D. Cohen, J. I. Maarek, and W. S. Grundfest, “Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy,” Proc. SPIE 3917, 93-101 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

Q Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup employed for the fluorescence lifetime experiment.

Fig. 2
Fig. 2

Typical experimental data for the fluorescence decay of one sound region and one carious region. Left, the fluorescence counts are shown on a linear scale. Right, the same results on a logarithmic scale.

Fig. 3
Fig. 3

Typical adjustment to experimental data performed by using a three-term exponential function. Specifically for this sample, the following results were obtained: Counts = 10 + 489 exp [ ( x 20 ) / 0.6 ] + 1573 exp [ ( x 20 ) / 2.4 ] + 708 exp [ ( x 20 ) / 7.1 ] . The three lifetimes achieved for all the samples can be observed in Table 1. The preexponential values together with each exponential term were integrated to extract their relative percentage contribution to fluorescence.

Fig. 4
Fig. 4

Average values of three different lifetimes for carious and sound samples. There was a statistical difference ( p < 0.05 ) between sound and carious enamel for all three lifetimes. The mean lifetime value of sound samples is higher than the lifetime of carious enamel.

Tables (1)

Tables Icon

Table 1 Lifetimes and Their Relative Percentage Values for 16 Sound and Carious Samples a

Metrics