Abstract

A clockwise rotor and a counterclockwise rotor (a clockwise rotor placed upside down) are linked on the optical axis to control the rotation direction in optical tweezers by displacing the trapping (focus) position. The dependence of optical torque on the trapping position of this linked rotor is analyzed using an upward-directed focused beam as illumination, via an objective lens with a numerical aperture of 1.4, using a ray optics model under the condition that laser light is incident to not only the lower surfaces, but also to the side surfaces of both rotors. The rotation rate in water is also simulated for an SU-8 linked rotor with 20μm diameter at a laser power of 200mW, with rotor thickness as a parameter, by balancing the optical torque with the drag force evaluated using computational fluid dynamics. It is confirmed that the rotation direction changes from clockwise to counterclockwise with the displacement of the trapping position, that almost the same rotation speed is possible in both directions, and that both speeds increase, reach a maximum at a rotor thickness of 9μm, and then decrease as the thickness increases.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209-2210(1994).
    [CrossRef]
  2. T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84, 4292-4294 (2004).
    [CrossRef]
  3. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the total optical angular momentum transfer in optical tweezers,” Opt. Express 14, 6963-6970 (2006).
    [CrossRef] [PubMed]
  4. R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269-2271 (1995).
    [CrossRef]
  5. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
    [CrossRef]
  6. H. Ukita and K. Nagatomi, “Optical tweezers and fluid characteristics of an optical rotator with slopes on the surface upon which light is incident and a cylindrical body,” Appl. Opt. 42, 2708-2715 (2003).
    [CrossRef] [PubMed]
  7. H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
    [CrossRef]
  8. Z. P. Luo, Y. L. Sun, and K. N. Ann, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779-1781 (2000).
    [CrossRef]
  9. R. C. Gauthier, R. N. Tait, H. Mende, and C. Pawlowicz, “Optical selection, manipulation, trapping, and activation of a microgear structure for application in micro-optical-electromechanical systems,” Appl. Opt. 40, 930-937 (2001).
    [CrossRef]
  10. H. Ukita, K. Takada, and Y. Itoh, “Experimental and theoretical analyses of three dimensional micro-flows generated by an optical mixer,” Proc. SPIE 5514, 704-711 (2004).
    [CrossRef]
  11. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91, 084101(2007).
    [CrossRef]
  12. S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.
  13. Y. Ogami, K. Nishikawa, and H. Ukita, “Study on the mixing performance of micro optical rotor by CFD,” JSME Int. J. B49, 645-652 (2006).
  14. H. R. Jiang and M. Sano, “Stretching single molecular DNA by temperature gradient,” Appl. Phys. Lett. 91, 154104 (2007).
    [CrossRef]
  15. N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391, 2395-2409 (2008).
    [CrossRef] [PubMed]
  16. H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15, 97-104 (2008).
    [CrossRef]

2008 (2)

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391, 2395-2409 (2008).
[CrossRef] [PubMed]

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15, 97-104 (2008).
[CrossRef]

2007 (3)

H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91, 084101(2007).
[CrossRef]

H. R. Jiang and M. Sano, “Stretching single molecular DNA by temperature gradient,” Appl. Phys. Lett. 91, 154104 (2007).
[CrossRef]

2006 (2)

2004 (2)

H. Ukita, K. Takada, and Y. Itoh, “Experimental and theoretical analyses of three dimensional micro-flows generated by an optical mixer,” Proc. SPIE 5514, 704-711 (2004).
[CrossRef]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

2003 (1)

2001 (2)

2000 (1)

Z. P. Luo, Y. L. Sun, and K. N. Ann, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779-1781 (2000).
[CrossRef]

1995 (1)

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269-2271 (1995).
[CrossRef]

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209-2210(1994).
[CrossRef]

Akagi, D.

H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
[CrossRef]

Ann, K. N.

Z. P. Luo, Y. L. Sun, and K. N. Ann, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779-1781 (2000).
[CrossRef]

Balslev, S.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Bilenberg, B.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Dickinson, M. R.

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Douville, N.

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391, 2395-2409 (2008).
[CrossRef] [PubMed]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Gauthier, R. C.

Geschk, O.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Gleeson, H. F.

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Heckenberg, N. R.

Higurashi, E.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209-2210(1994).
[CrossRef]

Huh, D.

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391, 2395-2409 (2008).
[CrossRef] [PubMed]

Inoue, H.

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91, 084101(2007).
[CrossRef]

Itoh, Y.

H. Ukita, K. Takada, and Y. Itoh, “Experimental and theoretical analyses of three dimensional micro-flows generated by an optical mixer,” Proc. SPIE 5514, 704-711 (2004).
[CrossRef]

Jiang, H. R.

H. R. Jiang and M. Sano, “Stretching single molecular DNA by temperature gradient,” Appl. Phys. Lett. 91, 154104 (2007).
[CrossRef]

Jorgensen, A. M.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Knöner, G.

Kristensen, A.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Kutter, J. P.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Luo, Z. P.

Z. P. Luo, Y. L. Sun, and K. N. Ann, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779-1781 (2000).
[CrossRef]

Maruo, S.

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91, 084101(2007).
[CrossRef]

Mende, H.

Mogensen, K. B.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Nagatomi, K.

Nieminen, T. A.

Nishikawa, K.

Y. Ogami, K. Nishikawa, and H. Ukita, “Study on the mixing performance of micro optical rotor by CFD,” JSME Int. J. B49, 645-652 (2006).

Nonohara, Y.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15, 97-104 (2008).
[CrossRef]

H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
[CrossRef]

Ogami, Y.

Y. Ogami, K. Nishikawa, and H. Ukita, “Study on the mixing performance of micro optical rotor by CFD,” JSME Int. J. B49, 645-652 (2006).

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209-2210(1994).
[CrossRef]

Ohnishi, T.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15, 97-104 (2008).
[CrossRef]

H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
[CrossRef]

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Parkin, S. J.

Pawlowicz, C.

Rubinsztein-Dunlop, H.

Sano, M.

H. R. Jiang and M. Sano, “Stretching single molecular DNA by temperature gradient,” Appl. Phys. Lett. 91, 154104 (2007).
[CrossRef]

Snakenborg, D.

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Sun, Y. L.

Z. P. Luo, Y. L. Sun, and K. N. Ann, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779-1781 (2000).
[CrossRef]

Tait, R. N.

Takada, K.

H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
[CrossRef]

H. Ukita, K. Takada, and Y. Itoh, “Experimental and theoretical analyses of three dimensional micro-flows generated by an optical mixer,” Proc. SPIE 5514, 704-711 (2004).
[CrossRef]

Takayama, S.

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391, 2395-2409 (2008).
[CrossRef] [PubMed]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209-2210(1994).
[CrossRef]

Ukita, H.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15, 97-104 (2008).
[CrossRef]

H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
[CrossRef]

Y. Ogami, K. Nishikawa, and H. Ukita, “Study on the mixing performance of micro optical rotor by CFD,” JSME Int. J. B49, 645-652 (2006).

H. Ukita, K. Takada, and Y. Itoh, “Experimental and theoretical analyses of three dimensional micro-flows generated by an optical mixer,” Proc. SPIE 5514, 704-711 (2004).
[CrossRef]

H. Ukita and K. Nagatomi, “Optical tweezers and fluid characteristics of an optical rotator with slopes on the surface upon which light is incident and a cylindrical body,” Appl. Opt. 42, 2708-2715 (2003).
[CrossRef] [PubMed]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209-2210(1994).
[CrossRef]

Wood, T. A.

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Wright, A. J.

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

Anal. Bioanal. Chem. (1)

N. Douville, D. Huh, and S. Takayama, “DNA linearization through confinement in nanofluidic channels,” Anal. Bioanal. Chem. 391, 2395-2409 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (7)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209-2210(1994).
[CrossRef]

T. A. Wood, H. F. Gleeson, M. R. Dickinson, and A. J. Wright, “Mechanisms of optical angular momentum transfer to nematic liquid crystalline droplets,” Appl. Phys. Lett. 84, 4292-4294 (2004).
[CrossRef]

R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269-2271 (1995).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

H. R. Jiang and M. Sano, “Stretching single molecular DNA by temperature gradient,” Appl. Phys. Lett. 91, 154104 (2007).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91, 084101(2007).
[CrossRef]

Z. P. Luo, Y. L. Sun, and K. N. Ann, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779-1781 (2000).
[CrossRef]

IEEJ Trans. Sensors Micromach. (1)

H. Ukita, K. Takada, D. Akagi, T. Ohnishi, and Y. Nonohara, “Three-wing optical mixer design, fabrication and application to a μ-TAS,” IEEJ Trans. Sensors Micromach. 127, 25-30 (2007) (in Japanese).
[CrossRef]

JSME Int. J. (1)

Y. Ogami, K. Nishikawa, and H. Ukita, “Study on the mixing performance of micro optical rotor by CFD,” JSME Int. J. B49, 645-652 (2006).

Opt. Express (1)

Opt. Rev. (1)

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15, 97-104 (2008).
[CrossRef]

Proc. SPIE (1)

H. Ukita, K. Takada, and Y. Itoh, “Experimental and theoretical analyses of three dimensional micro-flows generated by an optical mixer,” Proc. SPIE 5514, 704-711 (2004).
[CrossRef]

Other (1)

S. Balslev, B. Bilenberg, O. Geschk, A. M. Jorgensen, A. Kristensen, J. P. Kutter, K. B. Mogensen, and D. Snakenborg, “Fully integrated optical system for lab-on-a-chip applications,” in MEMS 2004 Technical Digest (IEEE, 2004), pp. 89-92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Proposed linked rotor illuminated by upward-directed focused laser beam.

Fig. 2
Fig. 2

Optical torque analyzed for the linked rotor in the following cases. (a) The trapping position is outside the lower rotor; incident light enters the lower surface and is transmitted from the side surface. The optical torque M 1 exerted on the side surface leads to counterclockwise rotation. (b) The trapping position is in the lower rotor; the optical torque M 2 exerted when incident light enters the side surface of the lower rotor and the optical torque M 3 exerted when incident light is transmitted from the side surface of another wing lead to counterclockwise rotation. (c) The trapping position is in the upper rotor; the optical torques M 2 and M 3 exerted, as in (b), result in clockwise rotation owing to the inverted rotor.

Fig. 3
Fig. 3

Dependence of optical torques M 1 , M 2 , M 3 , and M total = M 1 + M 2 + M 3 on trapping position simulated for the linked rotor under the following conditions: d = 20 μm , t = 10 μm , and w = 3.3 μm .

Fig. 4
Fig. 4

Dependence of optical torque on trapping position for the linked rotor with rotor thickness t as a parameter.

Fig. 5
Fig. 5

Dependence of total optical torque on trapping position of the linked rotor for wing angles of 0 ° and 60 ° .

Fig. 6
Fig. 6

Viscous drag force distribution at a rotation rate of 500 rpm in water.

Fig. 7
Fig. 7

Dependence of rotation rate on trapping position in water at a laser power of 200 mW with rotor thickness as a parameter.

Fig. 8
Fig. 8

Relationship among trapping position, optical force, and weight minus buoyancy of the SU-8 linked rotor with ρ = 1.1 , d = 20 μm , t = 10 μm , and rotor angle = 60 ° .

Fig. 9
Fig. 9

Rotation rate at the two stable trapping positions for the linked rotor with rotor thickness as a parameter.

Fig. 10
Fig. 10

(a) Neighboring maximum positive and maximum negative rotation rates for different rotor thicknesses. (b) Distance between positions of neighboring maximum positive and maximum negative rotation rates.

Tables (3)

Tables Icon

Table 1 Conditions of Optical Torque Simulation for a Linked Three-Wing Rotor

Tables Icon

Table 2 Optical Forces at Surfaces of the Linked Rotor with Thickness t = 10 μm When the Trapping Position is Located at z = 0 μm and the Gravitational Force is ( ρ 1 ) V g = 2.09 pN

Tables Icon

Table 3 Trapping Positions for the Linked Rotor (SU-8) with Different Thicknesses for Diameter d = 20 μm at a Laser Power of 200 mW in Water

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r R = w cos α ,
F = n 1 c 0 P { ( 1 + R ) cos θ 1 n 2 n 1 T cos θ 2 } ,
M 1 = 3 α = 0 α = cos 1 2 w d r L min r L max F r 2 d r d α ,
M drag = ( P t + S t ) r 2 d r d θ ,
F total = ( F l l + F l u + F u l + F u u ) d S .
F total = ( ρ 1 ) V g .

Metrics