Abstract

A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5×5 matrix residing within a single collecting objective’s pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1mrad, and an average roughness of 5.4nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
    [CrossRef]
  2. J. Allington-Smith, R. Content, and R. Haynes, “New developments in integral field spectroscopy,” Proc. SPIE 3355, 196-205 (1998).
    [CrossRef]
  3. F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
    [CrossRef]
  4. J. Allington-Smith, “Basic principles of integral field spectroscopy,” New Astron. Rev. 50, 244-251 (2006).
    [CrossRef]
  5. R. Content, “Slicer system of KMOS,” New Astron. Rev. 50, 374-377 (2006).
    [CrossRef]
  6. M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
    [CrossRef]
  7. F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
    [CrossRef]
  8. S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45, 093001(2006).
    [CrossRef]
  9. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17, 12293-12308 (2009).
    [CrossRef] [PubMed]
  10. S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008).
    [CrossRef]
  11. C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
    [CrossRef]
  12. C. M. Dubbeldam and D. J. Robertson, “Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications,” Proc. SPIE 6149, 61490R (2006).
    [CrossRef]
  13. J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
    [CrossRef]
  14. S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003).
    [CrossRef]
  15. W. Preuss and K. Rickens, “Precision machining of integral field units,” New Astron. Rev. 50, 332-336 (2006).
    [CrossRef]
  16. R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
    [CrossRef]
  17. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  18. M. Pluta, Advanced Light Microscopy (Elsevier, 1988), Vol. 1.
  19. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9, 444-453 (2001).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008).
[CrossRef]

2006 (8)

J. Allington-Smith, “Basic principles of integral field spectroscopy,” New Astron. Rev. 50, 244-251 (2006).
[CrossRef]

R. Content, “Slicer system of KMOS,” New Astron. Rev. 50, 374-377 (2006).
[CrossRef]

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
[CrossRef]

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45, 093001(2006).
[CrossRef]

C. M. Dubbeldam and D. J. Robertson, “Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications,” Proc. SPIE 6149, 61490R (2006).
[CrossRef]

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

W. Preuss and K. Rickens, “Precision machining of integral field units,” New Astron. Rev. 50, 332-336 (2006).
[CrossRef]

2004 (2)

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

2003 (2)

S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003).
[CrossRef]

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

2001 (1)

1998 (1)

J. Allington-Smith, R. Content, and R. Haynes, “New developments in integral field spectroscopy,” Proc. SPIE 3355, 196-205 (1998).
[CrossRef]

1996 (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Allington-Smith, J.

J. Allington-Smith, “Basic principles of integral field spectroscopy,” New Astron. Rev. 50, 244-251 (2006).
[CrossRef]

J. Allington-Smith, R. Content, and R. Haynes, “New developments in integral field spectroscopy,” Proc. SPIE 3355, 196-205 (1998).
[CrossRef]

Bacon, R.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Baker, S. L.

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Barrett, H. H.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Bonneville, C.

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Bortoletto, F.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

Cameron, M.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Clarke, F.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

Content, R.

R. Content, “Slicer system of KMOS,” New Astron. Rev. 50, 374-377 (2006).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

J. Allington-Smith, R. Content, and R. Haynes, “New developments in integral field spectroscopy,” Proc. SPIE 3355, 196-205 (1998).
[CrossRef]

Descour, M.

Dubbeldam, C. M.

C. M. Dubbeldam and D. J. Robertson, “Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications,” Proc. SPIE 6149, 61490R (2006).
[CrossRef]

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

Dubois, J.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
[CrossRef]

Ferruit, P.

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Ford, B.

Freeman, D.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

Gao, L.

Genzel, R.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Godefroy, P.

S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008).
[CrossRef]

Goodsall, T.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

Hastings, P. R.

S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003).
[CrossRef]

Haynes, R.

J. Allington-Smith, R. Content, and R. Haynes, “New developments in integral field spectroscopy,” Proc. SPIE 3355, 196-205 (1998).
[CrossRef]

Henault, F.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Hudec, R.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

Johnson, M. A.

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Kester, R. T.

Krabbe, A.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Kroker, H.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Lantz, B.

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

Laurent, F.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

Le Fevre, O.

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Lemonnier, J.

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

Lemonnier, J. P.

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Lynch, R.

Morris, S.

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

Myers, K. J.

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Norrie, C.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

Pina, L.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

Pluta, M.

M. Pluta, Advanced Light Microscopy (Elsevier, 1988), Vol. 1.

Preuss, W.

W. Preuss and K. Rickens, “Precision machining of integral field units,” New Astron. Rev. 50, 332-336 (2006).
[CrossRef]

Prieto, E.

S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008).
[CrossRef]

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45, 093001(2006).
[CrossRef]

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Prost, F.

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

Ramsay Howat, S. K.

S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003).
[CrossRef]

Ramsay-Howat, S.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

Ratti, S.

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Renault, E.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
[CrossRef]

Rickens, K.

W. Preuss and K. Rickens, “Precision machining of integral field units,” New Astron. Rev. 50, 332-336 (2006).
[CrossRef]

Robertson, D. J.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

C. M. Dubbeldam and D. J. Robertson, “Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications,” Proc. SPIE 6149, 61490R (2006).
[CrossRef]

Robinson, J. C.

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Salaun, Y.

S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008).
[CrossRef]

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

Schmidt, M. A.

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Schmoll, J.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

Soufli, R.

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Spiller, E.

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Tacconi-Garman, L. E.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Tecza, M.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

Thatte, N.

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Tkaczyk, T. S.

Todd, S. P.

S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003).
[CrossRef]

Vivès, S.

S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008).
[CrossRef]

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45, 093001(2006).
[CrossRef]

Weitzel, L.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

Wells, M.

S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: the next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531-546 (1996).
[CrossRef]

New Astron. Rev. (4)

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263-266 (2006).
[CrossRef]

W. Preuss and K. Rickens, “Precision machining of integral field units,” New Astron. Rev. 50, 332-336 (2006).
[CrossRef]

J. Allington-Smith, “Basic principles of integral field spectroscopy,” New Astron. Rev. 50, 244-251 (2006).
[CrossRef]

R. Content, “Slicer system of KMOS,” New Astron. Rev. 50, 374-377 (2006).
[CrossRef]

Opt. Eng (1)

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, and M. A. Johnson, “Smoothing of diamond-turned substrates for extreme ultraviolet illuminators,” Opt. Eng 43, 3089-3095 (2004).
[CrossRef]

Opt. Eng. (1)

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45, 093001(2006).
[CrossRef]

Opt. Express (2)

Proc. SPIE (7)

S. Vivès, E. Prieto, Y. Salaun, and P. Godefroy, “New technological developments in integral field spectroscopy,” Proc. SPIE 7018, 70182N (2008).
[CrossRef]

C. Bonneville, E. Prieto, P. Ferruit, F. Henault, J. P. Lemonnier, F. Prost, R. Bacon, and O. Le Fevre, “Design, prototypes and performances of an image slicer system for integral field spectroscopy,” Proc. SPIE 4842, 162-173 (2003).
[CrossRef]

C. M. Dubbeldam and D. J. Robertson, “Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications,” Proc. SPIE 6149, 61490R (2006).
[CrossRef]

M. Tecza, N. Thatte, F. Clarke, T. Goodsall, D. Freeman, and Y. Salaun, “SWIFT image slicer: large format, compact, low scattering image slicing,” Proc. SPIE 6273, 62732L (2006).
[CrossRef]

S. P. Todd, M. Wells, S. K. Ramsay Howat, and P. R. Hastings, “A cryogenic image slicing IFU for UKIRT: manufacture, alignment, laboratory testing and data reduction,” Proc. SPIE 4842, 151-161 (2003).
[CrossRef]

J. Allington-Smith, R. Content, and R. Haynes, “New developments in integral field spectroscopy,” Proc. SPIE 3355, 196-205 (1998).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134-145 (2004).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118, 1564-1573 (2006).
[CrossRef]

Other (2)

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

M. Pluta, Advanced Light Microscopy (Elsevier, 1988), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

(a) Basic configuration for the IMS system. (b) Illustration of the mapped final image on the detector prior to dispersion. (c) Close up of subimage 2 with dispersion of the linear mappings.

Fig. 2
Fig. 2

Minimum collecting objective pupil size for the grouped pupil array based on (a) geometric and (b) diffraction models. Pupils in (a) and (b) are not drawn to scale.

Fig. 3
Fig. 3

Theoretical pupil diffraction model.

Fig. 4
Fig. 4

(a) Simulated irradiance at a single subpupil created by diffraction at the image mapper. (b) Irradiance from one pupil entering a neighboring subpupil (defined as cross talk).

Fig. 5
Fig. 5

(a) Front view for fabrication of an image mapper using diamond raster fly cutting technique. (b) Top view of an image mapper during fabrication. The close up shows the diamond tool cutting the facet profile into the workpiece.

Fig. 6
Fig. 6

(a) Drawing of a flat bottom surface-shaped tool for fabrication of the image mapper with some of its critical design parameters labeled. (b) Actual fabricated tool with a 75 μm wide flat bottom profile at the tip of the tool. The location of the rake angle, β, is also shown in this picture.

Fig. 7
Fig. 7

(a) Illustration of the edge eating effect due to the y-tilt height differences at the edge of the image mapper. The shaded regions indicate where excess material is removed. (b) Image of an actual prototype image mapper with obvious edge eating on mirror facet 5.

Fig. 8
Fig. 8

(a) Nonoptimized sequential y-tilt layout with large y-tilt height difference, h. (b) Optimized staggered y-tilt image mapper layout with minimum y-height difference.

Fig. 9
Fig. 9

(a) Nongrouped x tilts, illustrating an increased edge eating effect. (b) Grouped x tilts (A, B, C, D, E) on each y tilt (1, 2, 3, 4, 5). Edge eating occurs at only the boundary between x tilts A and E.

Fig. 10
Fig. 10

Concave distribution of x tilts further reduces the effect of edge eating at the interface regions between y tilts.

Fig. 11
Fig. 11

(a) Picture of Nanotech 250 UPL machine with axes labeled. (b) Close up of goniometer fixture used to rotate the image mapper for fabrication of x-tilt mirror facets.

Fig. 12
Fig. 12

(a) Actual picture of the large-format image mapper (250 mirror facets) next to a US Quarter for size comparison. (b) Close up side view of the image mapper showing the excellent alignment of the facets.

Fig. 13
Fig. 13

White-light interferometer surface profile measurements of the individual mirror facets in the large-format image mapper taken at the (a) left edge, (b) center, (c) right edge of the component.

Fig. 14
Fig. 14

Facet surface error in facet width direction. (a) Single facet white-light interferometer image under 50 × objective, 1.3 × field lens. (b) Cross-section profile for the facet in (a).

Fig. 15
Fig. 15

Typical roughness results obtained from a large-format image mapper fabricated using a 75 μm wide surface-shaped diamond tool.

Fig. 16
Fig. 16

Test setup for imaging the pupil after reflection from the image mapper, (a) schematic drawing, (b) labeled picture of the actual setup. B.S., beam splitter.

Fig. 17
Fig. 17

Grouped subpupil array comparison between measured and theoretical results: (a) experimental image of the grouped pupils, (b) ideal model, (c) as-fabricated model incorporating the surface form error described in Subsection 4B. (d) Curve fit of the surface form error used in part (c). Cross sections from both models and experimental results on the (e) x axis and (f) y axis.

Fig. 18
Fig. 18

(a) Close up image of the image mapper from the center pupil with only (0,0) tilts for ( x , y ) . (b) Cross-section irradiance profile of the top facet showing 10 % cross talk from the neighboring facet.

Tables (4)

Tables Icon

Table 1 Large-Format Image Mapper Design Parameters

Tables Icon

Table 2 Surface-Shaped Flat Bottom Tool Design Parameters

Tables Icon

Table 3 Cutting Parameters for Image Mapper

Tables Icon

Table 4 Comparison of Image Mapper Tilt Designed and Measured Values

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ¯ im ( s ) ( x , y ) = I ¯ obj ( x , y ) * p incoh ( x , y ) .
P coh ( ξ , η ) = exp ( 4 i k f ) t ( λ f ξ , λ f η ) ,
t ( x , y ) = rect ( x w , y l ) ( I ) j = 1 M k = 1 N exp [ i 2 π ( α j x + β k y ) ] ( II ) m = rect ( x m c ( j + k 2 ) b b ) ( III ) .
p coh ( x , y ) sinc ( w x λ f , l y λ f ) ( I ) * j = 1 M k = 1 N m = exp ( i ϕ j , k ) ( II ) sinc ( b x λ f ) ( III ) δ ( x m λ f c ) ( IV ) * δ ( x α j λ f , y β k λ f ) ( V ) .
p incoh ( x , y ) = A c | p coh ( x , y ) | 2 .
x 1 % 2.7 λ f b .
α 1 % = x f 1.35 λ b .
NA min collect = 2.21 NA mapper L x 2 + L y 2 .
η ( λ ) = R ( λ ) [ 1 ( 4 π σ ¯ RMS λ ) 2 ] ,

Metrics