Abstract

Knowledge of the water concentration of plants can be helpful in several environmental and agricultural domains. There are many methods for the determination of water content in plant leaves; however, most of them give a relative moisture level or an analytical measure after a previous calibration procedure. Even for other biochemical compounds such as dry matter or chlorophyll, the measurement techniques could be destructive. For this reason, a nondestructive method has been developed to measure the biochemical compounds of a plant leaf, using an infrared spectroscopy technique. One important advantage is the simplicity of the device (RAdiomètre portatif de Mesure In Situ, RAMIS) and its capability to perform measurements in situ. The prototype is a leaf-clip configuration and is made of LEDs at five wave lengths (656, 721, 843, 937, and 1550nm), and a silicon/germanium photosensor. To compute the water content of vegetative leaves, the radiative transfer model PROSPECT was implemented. This model can accurately predict spectral transmittances in the 400nm to 2500nm spectral region as a function of the principal leaf biochemical contents: water, dry matter, and chlorophyll. Using the transmittance measured by RAMIS into an inversion procedure of PROSPECT: A Model of Leaf Optical Properties Spectra, we are able to compute the values of water contents that show an agreement with the water contents measured directly using dry weight procedures. This method is presented as a possibility to estimate other leaf biochemical compounds using appropriate wavelengths.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. McClure, A. Hamid, F. G. Giesbrecht, and W. W. Weeks, “Fourier analysis enhances NIR diffuse reflectance spectroscopy,” Appl. Spectrosc. 38, 322-329 (1984).
    [CrossRef]
  2. V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
    [CrossRef]
  3. G. Le Maire, C. Francois, and E. Dufrene, “Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements,” Remote Sensing Environ. 89, 1-28 (2003).
    [CrossRef]
  4. G. H. Downing, G. Carter, W. Holladayk, and W. G. Cibula, “The radiative-equivalent water thickness of leaves,” Remote Sensing Environ. 46, 103-107 (1993).
    [CrossRef]
  5. H. W. Gausman, “Plant Leaf Optical Properties in Visible and Near Infrared Light, Graduate Studies Series (Texas Tech University, 1985), Vol. 29.
  6. D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
    [CrossRef]
  7. T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
    [CrossRef]
  8. S. Chung, J. Sung, K. A. Sudduth, S. T. Drummond, and B. Hyun, “Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field,” Proceedings of the 5th International Conference on Precision Agriculture, P.C.Robert, ed. (ASA, 2001).
    [PubMed]
  9. A. D. Richardson, S. P. Duigan, and G. P. Berlyn, “An evaluation of noninvasive methods to estimate foliar chlorophyll content,” New Phytologist 153, 185-194 (2002).
    [CrossRef]
  10. Y. Goulas, Z. G. Cerovic, A. Cartelat, and I. Moya, “Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence,” Appl. Opt. 43, 4488-4496 (2004).
    [CrossRef] [PubMed]
  11. R. B. Myneni, Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology (Springer-Verlag, 1991).
    [PubMed]
  12. S. Jacquemoud and F. Baret, “PROSPECT: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75-91 (1990).
    [CrossRef]
  13. W. Allen, “Transmission of isotropic light across a dielectric surface in two and three dimensions,” J. Opt. Soc. Am. 63, 664-666 (1973).
    [CrossRef]
  14. J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
    [CrossRef]
  15. G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. London 11, 545-556 (1860).
    [CrossRef]
  16. S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
    [CrossRef]
  17. Y. Zuhu, S. Runhe, and Z. Ershun, “Calculation of mesophyll structure parameter and its effect on leaf spectral reflectance,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2005 (IEEE, 2005), pp 1299-1301.
    [CrossRef]
  18. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).
    [CrossRef]
  19. J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).
  20. P. Bousquet, Spectroscopie Instrumentale (Dunod Université, 1969).
  21. P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
    [CrossRef]
  22. D. A. Sims and J. A. Gamon, “Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages,” Remote Sensing Environ. 81, 337-354 (2002).
    [CrossRef]

2008 (1)

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

2007 (1)

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

2004 (1)

2003 (1)

G. Le Maire, C. Francois, and E. Dufrene, “Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements,” Remote Sensing Environ. 89, 1-28 (2003).
[CrossRef]

2002 (2)

A. D. Richardson, S. P. Duigan, and G. P. Berlyn, “An evaluation of noninvasive methods to estimate foliar chlorophyll content,” New Phytologist 153, 185-194 (2002).
[CrossRef]

D. A. Sims and J. A. Gamon, “Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages,” Remote Sensing Environ. 81, 337-354 (2002).
[CrossRef]

2001 (1)

P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
[CrossRef]

1999 (1)

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

1996 (2)

T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
[CrossRef]

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

1993 (1)

G. H. Downing, G. Carter, W. Holladayk, and W. G. Cibula, “The radiative-equivalent water thickness of leaves,” Remote Sensing Environ. 46, 103-107 (1993).
[CrossRef]

1990 (1)

S. Jacquemoud and F. Baret, “PROSPECT: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75-91 (1990).
[CrossRef]

1984 (1)

1973 (1)

1860 (1)

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. London 11, 545-556 (1860).
[CrossRef]

Allen, W.

Andreoli, G.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

Asner, G. P.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

Baret, F.

T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
[CrossRef]

S. Jacquemoud and F. Baret, “PROSPECT: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75-91 (1990).
[CrossRef]

Berlyn, G. P.

A. D. Richardson, S. P. Duigan, and G. P. Berlyn, “An evaluation of noninvasive methods to estimate foliar chlorophyll content,” New Phytologist 153, 185-194 (2002).
[CrossRef]

Bidel, P. R.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

Bousquet, L.

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

Bousquet, P.

P. Bousquet, Spectroscopie Instrumentale (Dunod Université, 1969).

Cabarrocas, P.

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

Cartelat, A.

Carter, G.

G. H. Downing, G. Carter, W. Holladayk, and W. G. Cibula, “The radiative-equivalent water thickness of leaves,” Remote Sensing Environ. 46, 103-107 (1993).
[CrossRef]

Ceccato, P.

P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
[CrossRef]

Cerovic, Z. G.

Chung, S.

S. Chung, J. Sung, K. A. Sudduth, S. T. Drummond, and B. Hyun, “Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field,” Proceedings of the 5th International Conference on Precision Agriculture, P.C.Robert, ed. (ASA, 2001).
[PubMed]

Cibula, W. G.

G. H. Downing, G. Carter, W. Holladayk, and W. G. Cibula, “The radiative-equivalent water thickness of leaves,” Remote Sensing Environ. 46, 103-107 (1993).
[CrossRef]

Combes, D.

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

De Rosny, G.

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

Demarez, V.

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

Downing, G. H.

G. H. Downing, G. Carter, W. Holladayk, and W. G. Cibula, “The radiative-equivalent water thickness of leaves,” Remote Sensing Environ. 46, 103-107 (1993).
[CrossRef]

Drummond, S. T.

S. Chung, J. Sung, K. A. Sudduth, S. T. Drummond, and B. Hyun, “Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field,” Proceedings of the 5th International Conference on Precision Agriculture, P.C.Robert, ed. (ASA, 2001).
[PubMed]

Dufrene, E.

G. Le Maire, C. Francois, and E. Dufrene, “Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements,” Remote Sensing Environ. 89, 1-28 (2003).
[CrossRef]

Dufrne, E.

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

Duigan, S. P.

A. D. Richardson, S. P. Duigan, and G. P. Berlyn, “An evaluation of noninvasive methods to estimate foliar chlorophyll content,” New Phytologist 153, 185-194 (2002).
[CrossRef]

Equer, B.

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

Ershun, Z.

Y. Zuhu, S. Runhe, and Z. Ershun, “Calculation of mesophyll structure parameter and its effect on leaf spectral reflectance,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2005 (IEEE, 2005), pp 1299-1301.
[CrossRef]

Feret, J. B.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

Flasse, S.

P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
[CrossRef]

Fourty, T.

T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
[CrossRef]

Francois, C.

G. Le Maire, C. Francois, and E. Dufrene, “Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements,” Remote Sensing Environ. 89, 1-28 (2003).
[CrossRef]

Frangi, J. P.

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

Franois, C.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

Gamon, J. A.

D. A. Sims and J. A. Gamon, “Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages,” Remote Sensing Environ. 81, 337-354 (2002).
[CrossRef]

Gastellu-Etchegorry, J. P.

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

Gausman, H. W.

H. W. Gausman, “Plant Leaf Optical Properties in Visible and Near Infrared Light, Graduate Studies Series (Texas Tech University, 1985), Vol. 29.

Giesbrecht, F. G.

Gitelson, A. A.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

Goulas, Y.

Grégoire, J. M.

P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
[CrossRef]

Hamid, A.

Holladayk, W.

G. H. Downing, G. Carter, W. Holladayk, and W. G. Cibula, “The radiative-equivalent water thickness of leaves,” Remote Sensing Environ. 46, 103-107 (1993).
[CrossRef]

Hosgood, B.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

Hyun, B.

S. Chung, J. Sung, K. A. Sudduth, S. T. Drummond, and B. Hyun, “Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field,” Proceedings of the 5th International Conference on Precision Agriculture, P.C.Robert, ed. (ASA, 2001).
[PubMed]

Jacquemoud, S.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
[CrossRef]

T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
[CrossRef]

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

S. Jacquemoud and F. Baret, “PROSPECT: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75-91 (1990).
[CrossRef]

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

Le Maire, G.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

G. Le Maire, C. Francois, and E. Dufrene, “Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements,” Remote Sensing Environ. 89, 1-28 (2003).
[CrossRef]

LeDantec, V.

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

Martin, R. E.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

Marty, G.

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

McClure, W. F.

Mougin, E.

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

Moya, I.

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

Y. Goulas, Z. G. Cerovic, A. Cartelat, and I. Moya, “Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence,” Appl. Opt. 43, 4488-4496 (2004).
[CrossRef] [PubMed]

Myneni, R. B.

R. B. Myneni, Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology (Springer-Verlag, 1991).
[PubMed]

Proisy, C.

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

Richardson, A. D.

A. D. Richardson, S. P. Duigan, and G. P. Berlyn, “An evaluation of noninvasive methods to estimate foliar chlorophyll content,” New Phytologist 153, 185-194 (2002).
[CrossRef]

Roca, I.

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

Runhe, S.

Y. Zuhu, S. Runhe, and Z. Ershun, “Calculation of mesophyll structure parameter and its effect on leaf spectral reflectance,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2005 (IEEE, 2005), pp 1299-1301.
[CrossRef]

Schmuck, G.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

Schmuck, S.

T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
[CrossRef]

Sims, D. A.

D. A. Sims and J. A. Gamon, “Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages,” Remote Sensing Environ. 81, 337-354 (2002).
[CrossRef]

Sinoquet, H.

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

Stokes, G. G.

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. London 11, 545-556 (1860).
[CrossRef]

Sudduth, K. A.

S. Chung, J. Sung, K. A. Sudduth, S. T. Drummond, and B. Hyun, “Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field,” Proceedings of the 5th International Conference on Precision Agriculture, P.C.Robert, ed. (ASA, 2001).
[PubMed]

Sung, J.

S. Chung, J. Sung, K. A. Sudduth, S. T. Drummond, and B. Hyun, “Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field,” Proceedings of the 5th International Conference on Precision Agriculture, P.C.Robert, ed. (ASA, 2001).
[PubMed]

Tarantola, A.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).
[CrossRef]

Tarantola, S.

P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
[CrossRef]

Ustin, S. L.

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

Vanderhagen, R.

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

Varlet-Grancher, C.

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

Verdebout, J.

T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
[CrossRef]

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

Weeks, W. W.

Zuhu, Y.

Y. Zuhu, S. Runhe, and Z. Ershun, “Calculation of mesophyll structure parameter and its effect on leaf spectral reflectance,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2005 (IEEE, 2005), pp 1299-1301.
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Intl. J. Remote Sensing (1)

V. Demarez, J. P. Gastellu-Etchegorry, E. Mougin, G. Marty, C. Proisy, E. Dufrne, and V. LeDantec, “Seasonal variation of leaf chlorophyll content of a temperate forest, inversion of the PROSPECT model,” Intl. J. Remote Sensing 20, 879-894(1999).
[CrossRef]

J. Opt. Soc. Am. (1)

New Phytologist (1)

A. D. Richardson, S. P. Duigan, and G. P. Berlyn, “An evaluation of noninvasive methods to estimate foliar chlorophyll content,” New Phytologist 153, 185-194 (2002).
[CrossRef]

Proc. R. Soc. London (1)

G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. London 11, 545-556 (1860).
[CrossRef]

Remote Sensing Environ. (9)

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood, “Estimating leaf biochemistry using the PROSPECT leaf optical properties model,” Remote Sensing Environ. 56, 194-202 (1996).
[CrossRef]

S. Jacquemoud and F. Baret, “PROSPECT: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75-91 (1990).
[CrossRef]

J. B. Feret, C. Franois, G. P. Asner, A. A. Gitelson, R. E. Martin, P. R. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud, “PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments,” Remote Sensing Environ. 112, 3030-3043 (2008).
[CrossRef]

G. Le Maire, C. Francois, and E. Dufrene, “Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements,” Remote Sensing Environ. 89, 1-28 (2003).
[CrossRef]

G. H. Downing, G. Carter, W. Holladayk, and W. G. Cibula, “The radiative-equivalent water thickness of leaves,” Remote Sensing Environ. 46, 103-107 (1993).
[CrossRef]

D. Combes, L. Bousquet, S. Jacquemoud, H. Sinoquet, C. Varlet-Grancher, and I. Moya, “A new spectrophotogoniometer to measure leaf spectral and directional optical properties,” Remote Sensing Environ. 109, 107-117 (2007).
[CrossRef]

T. Fourty, F. Baret, S. Jacquemoud, S. Schmuck, and J. Verdebout, “Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems,” Remote Sensing Environ. 56, 104-117 (1996).
[CrossRef]

P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire, “Detecting vegetation water content using reflectance in the optical domain,” Remote Sensing Environ. 77, 22-33 (2001).
[CrossRef]

D. A. Sims and J. A. Gamon, “Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages,” Remote Sensing Environ. 81, 337-354 (2002).
[CrossRef]

Other (7)

S. Chung, J. Sung, K. A. Sudduth, S. T. Drummond, and B. Hyun, “Spatial variability of yield, chlorophyll content, and soil properties in a Korean rice paddy field,” Proceedings of the 5th International Conference on Precision Agriculture, P.C.Robert, ed. (ASA, 2001).
[PubMed]

R. B. Myneni, Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology (Springer-Verlag, 1991).
[PubMed]

H. W. Gausman, “Plant Leaf Optical Properties in Visible and Near Infrared Light, Graduate Studies Series (Texas Tech University, 1985), Vol. 29.

Y. Zuhu, S. Runhe, and Z. Ershun, “Calculation of mesophyll structure parameter and its effect on leaf spectral reflectance,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, 2005 (IEEE, 2005), pp 1299-1301.
[CrossRef]

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).
[CrossRef]

J. P. Frangi, S. Jacquemoud, G. De Rosny, B. Equer, I. Roca, P. Cabarrocas, and R. Vanderhagen, “Radiometric device and method for determining in situ the biochemical content of leaves, and portable apparatus comprising same,” World Intellectual Property OrganizationWO/2003/006960, patent PCT/FR2002/002494 (23 January 2003).

P. Bousquet, Spectroscopie Instrumentale (Dunod Université, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Specific absorption coefficients of water, chlorophyll, and dry matter determined after a chemical extraction [14].

Fig. 2
Fig. 2

Leaf spectral transmittance predicted using the PROSPECT model in superposition with the source spectrum from the RAMIS prototype. These simulated variations of the spectral transmittance are observed as a function of the principal biochemical compound: (a) water ( C w ), (b) dry matter ( C m ), (c) chlorophyll AB ( C ab ), and (b) the leaf parameter structure (N). The arrow shows the parameter increment variation.

Fig. 3
Fig. 3

Source system of the RAMIS prototype conformed of five LEDs: (a) transversal view, (b) top view of the close compartment to avoid external light interference in the measurement procedure, and (c) mechanical support for the source.

Fig. 4
Fig. 4

Spectral responsivity of Si/Ge sensor (Judson Technologies).

Fig. 5
Fig. 5

Detector system of the RAMIS prototype composed of Si/Ge double layer photodiode sensor: (a) transversal view, (b) top view of mechanical configuration, and (c) mechanical support for the photodiode.

Fig. 6
Fig. 6

Schematic configuration of the RAMIS system.

Fig. 7
Fig. 7

Synchronization of the activation time t on and sampling time t s for the source and the sensor system.

Fig. 8
Fig. 8

Schematic representation of the reference I 0 ( λ C , i ) and the sample I ( λ C , i ) measurements performed by the RAMIS prototype.

Fig. 9
Fig. 9

Measured spectral emission of 1550 nm LED used in the source prototype RAMIS system.

Fig. 10
Fig. 10

Inversion procedure of the transmittances T R ( λ C , i ) , measured by RAMIS in order to compute the biochemical leaf parameters N, C w , and C m using the adaptation of the radiative transfer model PROSPECT.

Fig. 11
Fig. 11

Comparison between the measured and the estimated values of water thickness ( C w ) from different plant leaves (Table 1) using the wavelengths of 843, 937, and 1550 nm in the inversion procedure.

Fig. 12
Fig. 12

Comparison between the measured and the estimated values of dry matter content ( C m ) from different plant leaves (Table 1) using the wavelengths of 843 and 937 nm in the inversion procedure.

Tables (1)

Tables Icon

Table 1 Leaves of Different Plants Species Measured by RAMIS for Water and Dry Matter Estimations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T R ( λ C , i ) = V ( λ C , i ) V 0 ( λ C , i ) = I ( λ C , i ) I 0 ( λ C , i ) .
I H ( λ C , i ) = k 0 E ( λ , λ C , i ) T H ( λ ) S ( λ ) d λ ,
I 0 , H ( λ C , i ) = k 0 E ( λ , λ C , i ) S ( λ ) d λ ,
T H R ( λ C , i ) = I H ( λ C , i ) I 0 , H ( λ C , i ) = 0 E ( λ , λ C , i ) T H ( λ ) S ( λ ) d λ 0 E ( λ , λ C , i ) S ( λ ) d λ .
T H R ( λ C , i ) = ξ λ C , i T R ( λ C , i ) ,
C w = M M dry S ,

Metrics