Abstract

We present a physical model that explains several sequential stages of the conversion of optical to acoustical energy when irradiating diluted suspensions of metal nanoparticles with laser pulses. Optical absorption and scattering of a single particle driven by plasmon resonance interactions in an aqueous medium are considered. Thermal effects produced by laser-irradiated nanoparticles, dynamics of vapor bubble formation, and acoustic signals from expanding bubbles formed around heated nanoparticles are calculated. Stochastic features of the pressure magnitude emitted as a result of low-fluence irradiation of suspensions are also discussed. The probabilistic distribution of pressure magnitude from individual bubbles was found to obey Zipf’s law for low concentrations of nanoparticles, while increasing their concentration brings the pressure magnitude distribution into conformance with the Gaussian law.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” Proc. SPIE 443460-69 (2001).
    [CrossRef]
  2. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
    [CrossRef] [PubMed]
  3. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
    [CrossRef] [PubMed]
  4. C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
    [CrossRef]
  5. D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
    [CrossRef] [PubMed]
  6. J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993).
    [CrossRef] [PubMed]
  7. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
    [CrossRef]
  8. S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739-762 (1990).
    [CrossRef]
  9. H. Chen and G. Diebold, “Chemical generation of acoustic waves: a giant photoacoustic effect,” Science 270, 963-966(1995).
    [CrossRef]
  10. S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995).
    [CrossRef]
  11. S. Egerev, O. Ovchinnikov, and A. Fokin, “Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics,” Acoust. Phys. 51, 160-166 (2005).
    [CrossRef]
  12. B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996).
    [CrossRef] [PubMed]
  13. V. K. Pustovalov, “Thermal processes under the action of laser radiation pulse on absorbing granules in heterogeneous biotissues,” Int. J. Heat Mass. Trans. 36, 391-399 (1993).
    [CrossRef]
  14. J. M. Sun, B. S. Gerstman, and B. Li, “Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere,” J. Appl. Phys. 88, 2352-2362 (2000).
    [CrossRef]
  15. S. J. Till, P. K. Milsom, and G. A. Rowlands, “Simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bull. Math. Biol. 66, 791-808 (2004).
    [CrossRef] [PubMed]
  16. G. Mie, “Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen,” Ann. Phys. 25, 377-445 (1908).
    [CrossRef]
  17. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  19. Lord Rayleigh “On pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 83-100 (1917).
  20. C. E. Brennen, Cavitation and Bubble Dynamics, (Oxford U. Press, 1995).
  21. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987).
  22. D. V. Guzatov, A. A. Oraevsky, and A. N. Oraevsky, “Plasmon resonance in ellipsoidal nanoparticles with shells,” Quantum Electron. 33, 817-822 (2003).
    [CrossRef]
  23. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (National Bureau of Standards, 1964).
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  25. A. A. Oraevsky, “Gold and silver nanoparticles as contrast agents for optoacoustic imaging,” in Photoacoustic Imaging and Spectroscopy, L. Wang, ed. (Taylor & Francis, 2008), Chap. 30.
  26. C. P. Lin and M. W. Kelly “Cavitation and acoustic emission around laser-heated microparticle,” Appl. Phys. Lett. 72, 2800-2802 (1998).
    [CrossRef]
  27. V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
    [CrossRef]
  28. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
    [CrossRef] [PubMed]
  29. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226-1232 (1999).
    [CrossRef]
  30. G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, 1949).

2007 (1)

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

2006 (1)

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
[CrossRef]

2005 (2)

S. Egerev, O. Ovchinnikov, and A. Fokin, “Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics,” Acoust. Phys. 51, 160-166 (2005).
[CrossRef]

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[CrossRef]

2004 (2)

S. J. Till, P. K. Milsom, and G. A. Rowlands, “Simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bull. Math. Biol. 66, 791-808 (2004).
[CrossRef] [PubMed]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

2003 (2)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
[CrossRef] [PubMed]

D. V. Guzatov, A. A. Oraevsky, and A. N. Oraevsky, “Plasmon resonance in ellipsoidal nanoparticles with shells,” Quantum Electron. 33, 817-822 (2003).
[CrossRef]

2001 (2)

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” Proc. SPIE 443460-69 (2001).
[CrossRef]

D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
[CrossRef] [PubMed]

2000 (1)

J. M. Sun, B. S. Gerstman, and B. Li, “Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere,” J. Appl. Phys. 88, 2352-2362 (2000).
[CrossRef]

1999 (2)

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
[CrossRef]

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226-1232 (1999).
[CrossRef]

1998 (1)

C. P. Lin and M. W. Kelly “Cavitation and acoustic emission around laser-heated microparticle,” Appl. Phys. Lett. 72, 2800-2802 (1998).
[CrossRef]

1996 (1)

B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996).
[CrossRef] [PubMed]

1995 (2)

H. Chen and G. Diebold, “Chemical generation of acoustic waves: a giant photoacoustic effect,” Science 270, 963-966(1995).
[CrossRef]

S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995).
[CrossRef]

1993 (2)

V. K. Pustovalov, “Thermal processes under the action of laser radiation pulse on absorbing granules in heterogeneous biotissues,” Int. J. Heat Mass. Trans. 36, 391-399 (1993).
[CrossRef]

J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993).
[CrossRef] [PubMed]

1990 (1)

S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739-762 (1990).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1917 (1)

Lord Rayleigh “On pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 83-100 (1917).

1908 (1)

G. Mie, “Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen,” Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Aleinikova, O.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
[CrossRef]

Alimpiev, S. S.

S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995).
[CrossRef]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
[CrossRef] [PubMed]

D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
[CrossRef] [PubMed]

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
[CrossRef]

Birngruber, R.

J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993).
[CrossRef] [PubMed]

Brennen, C. E.

C. E. Brennen, Cavitation and Bubble Dynamics, (Oxford U. Press, 1995).

Chen, H.

H. Chen and G. Diebold, “Chemical generation of acoustic waves: a giant photoacoustic effect,” Science 270, 963-966(1995).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

Diebold, G.

H. Chen and G. Diebold, “Chemical generation of acoustic waves: a giant photoacoustic effect,” Science 270, 963-966(1995).
[CrossRef]

Egerev, S.

S. Egerev, O. Ovchinnikov, and A. Fokin, “Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics,” Acoust. Phys. 51, 160-166 (2005).
[CrossRef]

Egerev, S. V.

S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995).
[CrossRef]

S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739-762 (1990).
[CrossRef]

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

Flotte, T.

J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993).
[CrossRef] [PubMed]

Fokin, A.

S. Egerev, O. Ovchinnikov, and A. Fokin, “Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics,” Acoust. Phys. 51, 160-166 (2005).
[CrossRef]

Galanzha, E. I.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

Gerstman, B. S.

J. M. Sun, B. S. Gerstman, and B. Li, “Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere,” J. Appl. Phys. 88, 2352-2362 (2000).
[CrossRef]

B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996).
[CrossRef] [PubMed]

Guzatov, D. V.

D. V. Guzatov, A. A. Oraevsky, and A. N. Oraevsky, “Plasmon resonance in ellipsoidal nanoparticles with shells,” Quantum Electron. 33, 817-822 (2003).
[CrossRef]

Hillenkamp, F.

J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993).
[CrossRef] [PubMed]

Jacques, S. L.

B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996).
[CrossRef] [PubMed]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Karabutov, A. A.

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” Proc. SPIE 443460-69 (2001).
[CrossRef]

Kelly, M. W.

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
[CrossRef]

C. P. Lin and M. W. Kelly “Cavitation and acoustic emission around laser-heated microparticle,” Appl. Phys. Lett. 72, 2800-2802 (1998).
[CrossRef]

Khlebtsov, N. G.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

Kim, J. W.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

Koda, S.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226-1232 (1999).
[CrossRef]

Kotaidis, V.

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[CrossRef]

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226-1232 (1999).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987).

Lapotko, D.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
[CrossRef]

Latina, M. A.

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
[CrossRef]

Leszczynski, D.

D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
[CrossRef] [PubMed]

Li, B.

J. M. Sun, B. S. Gerstman, and B. Li, “Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere,” J. Appl. Phys. 88, 2352-2362 (2000).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987).

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
[CrossRef] [PubMed]

D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
[CrossRef] [PubMed]

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
[CrossRef]

C. P. Lin and M. W. Kelly “Cavitation and acoustic emission around laser-heated microparticle,” Appl. Phys. Lett. 72, 2800-2802 (1998).
[CrossRef]

Lukianova, E.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
[CrossRef]

Lyamshev, L. M.

S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739-762 (1990).
[CrossRef]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen,” Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Milsom, P. K.

S. J. Till, P. K. Milsom, and G. A. Rowlands, “Simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bull. Math. Biol. 66, 791-808 (2004).
[CrossRef] [PubMed]

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

Oraevsky, A. A.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
[CrossRef]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

D. V. Guzatov, A. A. Oraevsky, and A. N. Oraevsky, “Plasmon resonance in ellipsoidal nanoparticles with shells,” Quantum Electron. 33, 817-822 (2003).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” Proc. SPIE 443460-69 (2001).
[CrossRef]

A. A. Oraevsky, “Gold and silver nanoparticles as contrast agents for optoacoustic imaging,” in Photoacoustic Imaging and Spectroscopy, L. Wang, ed. (Taylor & Francis, 2008), Chap. 30.

Oraevsky, A. N.

D. V. Guzatov, A. A. Oraevsky, and A. N. Oraevsky, “Plasmon resonance in ellipsoidal nanoparticles with shells,” Quantum Electron. 33, 817-822 (2003).
[CrossRef]

Ovchinnikov, O.

S. Egerev, O. Ovchinnikov, and A. Fokin, “Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics,” Acoust. Phys. 51, 160-166 (2005).
[CrossRef]

Pashin, A. E.

S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995).
[CrossRef]

Pastila, R. K.

D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
[CrossRef] [PubMed]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
[CrossRef] [PubMed]

D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
[CrossRef] [PubMed]

Plech, A.

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[CrossRef]

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

Potapnev, M.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
[CrossRef]

Puchenkov, O. V.

S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739-762 (1990).
[CrossRef]

Pustovalov, V. K.

V. K. Pustovalov, “Thermal processes under the action of laser radiation pulse on absorbing granules in heterogeneous biotissues,” Int. J. Heat Mass. Trans. 36, 391-399 (1993).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rayleigh, Lord

Lord Rayleigh “On pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 83-100 (1917).

Rogers, M. E.

B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996).
[CrossRef] [PubMed]

Roider, J.

J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993).
[CrossRef] [PubMed]

Rowlands, G. A.

S. J. Till, P. K. Milsom, and G. A. Rowlands, “Simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bull. Math. Biol. 66, 791-808 (2004).
[CrossRef] [PubMed]

Savateeva, E. V.

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” Proc. SPIE 443460-69 (2001).
[CrossRef]

Shashkov, E. V.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

Sibayan, S. A. B.

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
[CrossRef]

Simanovskii, Y. O.

S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Sun, J. M.

J. M. Sun, B. S. Gerstman, and B. Li, “Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere,” J. Appl. Phys. 88, 2352-2362 (2000).
[CrossRef]

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226-1232 (1999).
[CrossRef]

Thompson, C. R.

B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996).
[CrossRef] [PubMed]

Till, S. J.

S. J. Till, P. K. Milsom, and G. A. Rowlands, “Simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bull. Math. Biol. 66, 791-808 (2004).
[CrossRef] [PubMed]

Tuchin, V. V.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

Wei, X.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
[CrossRef] [PubMed]

Zharov, V. P.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

Zipf, G. K.

G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, 1949).

Acoust. Phys. (1)

S. Egerev, O. Ovchinnikov, and A. Fokin, “Optoacoustic conversion in suspensions: the competition of mechanisms and statistical characteristics,” Acoust. Phys. 51, 160-166 (2005).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beitraege zur Optik trueber Medien, speziell kolloidaler Metalloesungen,” Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Appl. Phys. Lett. (2)

C. P. Lin and M. W. Kelly “Cavitation and acoustic emission around laser-heated microparticle,” Appl. Phys. Lett. 72, 2800-2802 (1998).
[CrossRef]

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[CrossRef]

Biophys. J. (1)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023-4032(2003).
[CrossRef] [PubMed]

Bull. Math. Biol. (1)

S. J. Till, P. K. Milsom, and G. A. Rowlands, “Simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bull. Math. Biol. 66, 791-808 (2004).
[CrossRef] [PubMed]

Cancer Lett. (1)

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. A. Oraevsky, “Laser activated nanothermolysis for elimination of tumor cells,” Cancer Lett. 239, 36-45 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, and R. R. Anderson, “Selective cell killing by microparticle absorption of pulsed laser irradiation,” IEEE J. Sel. Top. Quantum Electron. 5, 963-968 (1999).
[CrossRef]

Int. J. Heat Mass. Trans. (1)

V. K. Pustovalov, “Thermal processes under the action of laser radiation pulse on absorbing granules in heterogeneous biotissues,” Int. J. Heat Mass. Trans. 36, 391-399 (1993).
[CrossRef]

J. Appl. Phys. (1)

J. M. Sun, B. S. Gerstman, and B. Li, “Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere,” J. Appl. Phys. 88, 2352-2362 (2000).
[CrossRef]

J. Biomed. Opt. (1)

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12, 051503 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226-1232 (1999).
[CrossRef]

Laser Chem. (1)

S. S. Alimpiev, Y. O. Simanovskii, S. V. Egerev, and A. E. Pashin, “Optoacoustic detection of microparticles in liquids at laser fluences below the optical breakdown threshold,” Laser Chem. 1663-73 (1995).
[CrossRef]

Lasers Surg. Med. (1)

B. S. Gerstman, C. R. Thompson, S. L. Jacques, and M. E. Rogers, “Laser induced bubble formation in the retina,” Lasers Surg. Med. 18, 10-21 (1996).
[CrossRef] [PubMed]

Mol. Imaging Biol. (1)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6, 341-349 (2004).
[CrossRef] [PubMed]

Philos. Mag. (1)

Lord Rayleigh “On pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 83-100 (1917).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

J. Roider, F. Hillenkamp, T. Flotte, and R. Birngruber, “Microphotocoagulation: selective effects of repetitive short laser pulses,” Proc. Natl. Acad. Sci. USA 90, 8643(1993).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. A. Oraevsky, A. A. Karabutov, and E. V. Savateeva, “Enhancement of optoacoustic tissue contrast with absorbing nanoparticles,” Proc. SPIE 443460-69 (2001).
[CrossRef]

Quantum Electron. (1)

D. V. Guzatov, A. A. Oraevsky, and A. N. Oraevsky, “Plasmon resonance in ellipsoidal nanoparticles with shells,” Quantum Electron. 33, 817-822 (2003).
[CrossRef]

Radiat. Res. (1)

D. Leszczynski, C. M. Pitsillides, R. K. Pastila, R. R. Anderson, and C. P. Lin, “Laser-beam-triggered microcavitation: a novel method for selective cell destruction,” Radiat. Res. 156, 399-407 (2001).
[CrossRef] [PubMed]

Science (1)

H. Chen and G. Diebold, “Chemical generation of acoustic waves: a giant photoacoustic effect,” Science 270, 963-966(1995).
[CrossRef]

Sov. Phys. Usp. (1)

S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov, “Laser dynamic optoacoustic diagnostics of condensed media,” Sov. Phys. Usp. 33, 739-762 (1990).
[CrossRef]

Other (7)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (National Bureau of Standards, 1964).

C. E. Brennen, Cavitation and Bubble Dynamics, (Oxford U. Press, 1995).

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987).

G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, 1949).

A. A. Oraevsky, “Gold and silver nanoparticles as contrast agents for optoacoustic imaging,” in Photoacoustic Imaging and Spectroscopy, L. Wang, ed. (Taylor & Francis, 2008), Chap. 30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Record of pulse-by-pulse acoustic response magnitude over the course of 2000 laser shots irradiated the distilled and double-filtered water. The fluence value is slightly over the cavitation threshold. Violent magnitude fluctuations can be observed.

Fig. 2
Fig. 2

Simplified log–log rank-magnitude distribution after the random acoustic magnitude data is brought to order for the case of 200 laser shots of various suspensions. Here curve 1 is Zipf’s distribution of magnitude (having α = 1 ) for the case of a variety of background particles suspended in water having diameters below 300 nm ; curves 2 and 3 show Zipf’s distributions with shorter tails ( α = 3 and α = 7 , respectively) as the amount of gold NPs of equal size in suspension is subsequently increased against the background impurities; curve 4 is the distribution that takes the form of Gaussian profile when the number of gold NPs is further increased.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

σ abs = 2 π k 0 2 | ε | n = 1 { ( 2 n + 1 ) | a n t | 2 C n + | b n t | 2 [ ( n + 1 ) C n 1 + n C n + 1 ] } ,
σ scat = 2 π k 0 2 n = 1 ( 2 n + 1 ) ( | a n r | 2 + | b n r | 2 ) ,
c p ρ p T p ( r , t ) t = k p Δ T p ( r , t ) + E ˙ ( t ) V p , r R p ,
c w ρ w T w ( r , t ) t = k w Δ T w ( r , t ) , r R p ,
E ˙ ( t ) = σ abs q ( t ) ,
T p ( r , t ) = T w ( r , t ) , k p T p ( r , t ) r = k w T w ( r , t ) r , r = R p .
c np ρ np V np d T np ( t ) d t = E ˙ ( t ) S np q th ( t ) ,
c w ρ w θ ( r , t ) t = k w 2 θ ( r , t ) t 2 , r R np θ ( R np , t ) = T np ( t ) .
q th ( t ) = k w ( T p ( t ) R p + 1 π χ w d d t t T p ( τ ) d τ ( t τ ) 1 / 2 ) .
d T np ( t ) d t + 3 α χ w R np 2 ( T np ( t ) + R np π χ w d d t t T np ( τ ) d τ t τ ) = E ( t ) ˙ c np ρ np V np ,
T p ( s ) = σ abs ( s ) c np ρ np V np 1 s + 3 α χ w R np ( s + χ w R np ) ,
T p ( t ) = T 0 G ( t ) ,
G ( t ) = 1 ξ 2 ξ 1 [ ξ 2 erfcx ( ξ 2 χ w t R np ) ξ 1 erfcx ( ξ 1 erfcx ( ξ 1 χ w t R np ) ] ,
ξ 1 , 2 = 3 / 2 [ α α ( α 4 / 3 ) ] , erfcx ( x ) = e x erfcx = e x erfcx ( x ) ,
T p ( t ) = T 0 1 E 0 t q ( τ ) G ( t τ ) d τ .
T p ( t ) = σ abs q 0 4 π k w R np [ 1 + ξ 1 ξ 2 ξ 1 erfcx ( ξ 2 χ w t R np ) ξ 1 ξ 2 ξ 1 erfcx ( ξ 1 χ w t R np ) ] .
T p ( t ) σ abs q 0 t c np ρ np V np ( 1 4 3 π ( ξ 1 + ξ 2 ) χ w t R np + ) .
T np ( t ) σ abs q 0 4 π k w R np ( 1 R np π χ w t + )
F c = χ w τ L σ abs 4 π R np c w ρ w T b 1 + ξ 1 ξ 2 ξ 1 erfcx ( ξ 2 χ w τ L R np ) ξ 1 ξ 2 ξ 1 erfcx ( ξ 1 χ w τ L R np ) .
F c * = V np c np ρ np T b / σ abs .
F c = 4 π R np c w ρ w T b χ w τ L / σ abs .
m b = 4 π ( R b , 0 3 R np 3 ) ρ cw / 3 = ( F F c ) σ abs / E cw ,
R b , 0 = 3 3 4 π ρ cw ( ( F F c σ abs ) E cw ) + R np 3 ,
p b ( t ) p A ρ w = R b d 2 R b d t 2 + 3 2 ( d R b d t ) + 4 v w R b d R b d t + 2 γ w ρ w R b ,
V b ( t ) = 4 3 π ( R b 3 R np 3 ) , p b ( t ) = R A T b ( t ) V b ( t ) b a V b ( t ) 2 ( van   der   Waals ) , T b ( t ) T cw = ( V b ( t ) b V cw b ) c v / R ( d S ) = 0.
p ac = ρ w 4 π r d 2 V b ( t ) d t 2 .
p ˜ ω = p ω exp ( ω 2 τ att 2 / 4 ) , τ att = 5 r obs ( ns ) ,
p ˜ ( t ) = 1 π p ( t ) exp ( ( t t ) 2 τ att 2 ) d t τ att | t t / r obs .
p max ( F F c ) .
n ( x ) = C / x 1 + α , 0 < α < ,
x ( r ) = A / ( r + B ) 1 / α ,
p max ( Pa ) = 40 ( F F c ) , F c = 0.05 J / cm 2

Metrics