Abstract

A random nonspherical model for biological tissue and cells permits a better description of their optical properties. Rough surface nonspherical particles have been employed to model biological tissue and cells. The phase function, the anisotropy factor of scattering, and the reduced scattering coefficient are derived. The effect of different size distributions is also discussed. The theoretical results show good agreement with experimental data.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and interpretation of extinction spectra of oriented nonspherical composite particles: application to biological cells

Yulia M. Serebrennikova and Luis H. Garcia-Rubio
Appl. Opt. 49(23) 4460-4471 (2010)

Fractal mechanisms of light scattering in biological tissue and cells

M. Xu and R. R. Alfano
Opt. Lett. 30(22) 3051-3053 (2005)

Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics

Judith R. Mourant, James P. Freyer, Andreas H. Hielscher, Angelia A. Eick, Dan Shen, and Tamara M. Johnson
Appl. Opt. 37(16) 3586-3593 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription