Abstract

Time-resolved spectroscopy using a pulsed supercontinuum source was employed for the assessment of moisture content (MC) in dry wood. The MC of wood at different relative humidities between 94% and 12% has been monitored. Following curve fitting, absorption spectra between 700 and 1100nm of samples suggest that differences in the MC of wood are appreciable at around 970nm. Further, dynamic changes in MC were simulated following a change in relative humidity. Differences in absorption spectra with changes in MC of around 1% can be detected. Various applications of the technique are suggested.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34-40 (1995).
    [CrossRef]
  2. S. Jacques and B. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
    [CrossRef] [PubMed]
  3. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. S. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943 (1999).
    [CrossRef]
  4. M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
    [CrossRef]
  5. J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
    [CrossRef]
  6. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14, 3641-3653 (2006).
    [CrossRef] [PubMed]
  7. C. D'Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62, 569-574 (2008).
    [CrossRef] [PubMed]
  8. A. Kienle, C. D'Andrea, F. Foschum, P. Taroni, and A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16, 9895-9906 (2008).
    [CrossRef] [PubMed]
  9. W. Simpson and A. TenWolde, “Physical properties and moisture relations of wood,” in “Wood Handbook: Wood as an Engineering Material,” Forest Products Laboratory (Forest Products Society, 1999), pp 3.1-3.24.
  10. W. Simpson, “Drying and control of moisture content and dimensional changes,” in “Wood Handbook: Wood as an Engineering Material,” Forest Products Laboratory (Forest Products Society, 1999), pp. 12.1-12.20.
  11. R. B. Hoadley, “Wood as a physical surface for paint application,” in Painted Wood: History and Conservation, V. Dorge and F. C. Howlet, eds. (Getty Conservation Institute, 1998), pp. 2-16.
  12. L. Bratasz, R. Kozłowski, D. Camuffo, and E. Pagan, “Impact of indoor heating on painted wood: monitoring the altarpiece in the church of Santa Maria Maddalena in Rocca Pietore, Italy,” Stud. Conserv. 52 (3), 199-210 (2007).
  13. H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, “A model of anisotropic swelling and shrinking process of wood,” Wood Sci. Technol. 35 (1-2), 167-181 (2001).
    [CrossRef]
  14. D. Camuffo, E. Pagan, A. Bernardi, and F. Becherini, “The impact of heating, lighting and people in re-using historical buildings: a case study,” J. Cultural Heritage 5, 409-416 (2004).
    [CrossRef]
  15. D. W. Grattan, “Permanent probes for measuring moisture in wood,” APT Bull. 21 (3-4), 71-78 (1989).
    [CrossRef]
  16. M. W. J. Derksen, P. J. M. van de Oetelaar, and F. A. Maris, “The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product,” J. Pharm. Biomed. Anal. 17, 473-480 (1998).
    [CrossRef] [PubMed]
  17. J. Nyström and E. Dahlquist, “Methods for determination of moisture content in woodchips for power plants--a review,” Fuel 83, 773-779 (2004).
    [CrossRef]
  18. J. C. F. Walker, B. G. Butterfield, T. A. G. Langrish, J. M. Harris, and J. M. Uprichard, Primary Wood Processing (Chapman & Hall, 1993).
  19. A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Clinically-compatible time-resolved diffuse spectroscopy in the 600-1100 nm bandwidth,” Proc. SPIE 6864, 68640W (2008).
    [CrossRef]
  20. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587-4599 (1997).
    [CrossRef] [PubMed]
  21. L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” J. Res. Natl. Bur. Stand. Sec. A 81, 89-96 (1977).
  22. A. A. Yakovenko, V. A. Yashin, A. E. Kovalev, and E. E. Fesenko, “Structure of the vibrational absorption spectra of water in the visible region,” Biophysics 47, 891-89 (2002).
  23. A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482-14487 (2007).
    [CrossRef] [PubMed]

2008 (4)

A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Clinically-compatible time-resolved diffuse spectroscopy in the 600-1100 nm bandwidth,” Proc. SPIE 6864, 68640W (2008).
[CrossRef]

S. Jacques and B. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
[CrossRef] [PubMed]

C. D'Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62, 569-574 (2008).
[CrossRef] [PubMed]

A. Kienle, C. D'Andrea, F. Foschum, P. Taroni, and A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16, 9895-9906 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482-14487 (2007).
[CrossRef] [PubMed]

L. Bratasz, R. Kozłowski, D. Camuffo, and E. Pagan, “Impact of indoor heating on painted wood: monitoring the altarpiece in the church of Santa Maria Maddalena in Rocca Pietore, Italy,” Stud. Conserv. 52 (3), 199-210 (2007).

2006 (1)

2004 (2)

D. Camuffo, E. Pagan, A. Bernardi, and F. Becherini, “The impact of heating, lighting and people in re-using historical buildings: a case study,” J. Cultural Heritage 5, 409-416 (2004).
[CrossRef]

J. Nyström and E. Dahlquist, “Methods for determination of moisture content in woodchips for power plants--a review,” Fuel 83, 773-779 (2004).
[CrossRef]

2003 (1)

J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
[CrossRef]

2002 (1)

A. A. Yakovenko, V. A. Yashin, A. E. Kovalev, and E. E. Fesenko, “Structure of the vibrational absorption spectra of water in the visible region,” Biophysics 47, 891-89 (2002).

2001 (1)

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, “A model of anisotropic swelling and shrinking process of wood,” Wood Sci. Technol. 35 (1-2), 167-181 (2001).
[CrossRef]

1999 (2)

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. S. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927-2943 (1999).
[CrossRef]

1998 (1)

M. W. J. Derksen, P. J. M. van de Oetelaar, and F. A. Maris, “The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product,” J. Pharm. Biomed. Anal. 17, 473-480 (1998).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34-40 (1995).
[CrossRef]

1989 (1)

D. W. Grattan, “Permanent probes for measuring moisture in wood,” APT Bull. 21 (3-4), 71-78 (1989).
[CrossRef]

1977 (1)

L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” J. Res. Natl. Bur. Stand. Sec. A 81, 89-96 (1977).

Alnis, J.

J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
[CrossRef]

Anderson, B.

J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
[CrossRef]

Andersson, M.

Bassi, A.

A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Clinically-compatible time-resolved diffuse spectroscopy in the 600-1100 nm bandwidth,” Proc. SPIE 6864, 68640W (2008).
[CrossRef]

A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482-14487 (2007).
[CrossRef] [PubMed]

Becherini, F.

D. Camuffo, E. Pagan, A. Bernardi, and F. Becherini, “The impact of heating, lighting and people in re-using historical buildings: a case study,” J. Cultural Heritage 5, 409-416 (2004).
[CrossRef]

Bernardi, A.

D. Camuffo, E. Pagan, A. Bernardi, and F. Becherini, “The impact of heating, lighting and people in re-using historical buildings: a case study,” J. Cultural Heritage 5, 409-416 (2004).
[CrossRef]

Bratasz, L.

L. Bratasz, R. Kozłowski, D. Camuffo, and E. Pagan, “Impact of indoor heating on painted wood: monitoring the altarpiece in the church of Santa Maria Maddalena in Rocca Pietore, Italy,” Stud. Conserv. 52 (3), 199-210 (2007).

Butterfield, B. G.

J. C. F. Walker, B. G. Butterfield, T. A. G. Langrish, J. M. Harris, and J. M. Uprichard, Primary Wood Processing (Chapman & Hall, 1993).

Camuffo, D.

L. Bratasz, R. Kozłowski, D. Camuffo, and E. Pagan, “Impact of indoor heating on painted wood: monitoring the altarpiece in the church of Santa Maria Maddalena in Rocca Pietore, Italy,” Stud. Conserv. 52 (3), 199-210 (2007).

D. Camuffo, E. Pagan, A. Bernardi, and F. Becherini, “The impact of heating, lighting and people in re-using historical buildings: a case study,” J. Cultural Heritage 5, 409-416 (2004).
[CrossRef]

Chance, B.

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34-40 (1995).
[CrossRef]

Comelli, D.

Contini, D.

Cubeddu, R.

Dahlquist, E.

J. Nyström and E. Dahlquist, “Methods for determination of moisture content in woodchips for power plants--a review,” Fuel 83, 773-779 (2004).
[CrossRef]

D'Andrea, C.

Derksen, M. W. J.

M. W. J. Derksen, P. J. M. van de Oetelaar, and F. A. Maris, “The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product,” J. Pharm. Biomed. Anal. 17, 473-480 (1998).
[CrossRef] [PubMed]

Farina, A.

Fesenko, E. E.

A. A. Yakovenko, V. A. Yashin, A. E. Kovalev, and E. E. Fesenko, “Structure of the vibrational absorption spectra of water in the visible region,” Biophysics 47, 891-89 (2002).

Foschum, F.

Grattan, D. W.

D. W. Grattan, “Permanent probes for measuring moisture in wood,” APT Bull. 21 (3-4), 71-78 (1989).
[CrossRef]

Greenspan, L.

L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” J. Res. Natl. Bur. Stand. Sec. A 81, 89-96 (1977).

Gril, J.

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, “A model of anisotropic swelling and shrinking process of wood,” Wood Sci. Technol. 35 (1-2), 167-181 (2001).
[CrossRef]

Grosenick, D.

Harris, J. M.

J. C. F. Walker, B. G. Butterfield, T. A. G. Langrish, J. M. Harris, and J. M. Uprichard, Primary Wood Processing (Chapman & Hall, 1993).

Hirano, I.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Hoadley, R. B.

R. B. Hoadley, “Wood as a physical surface for paint application,” in Painted Wood: History and Conservation, V. Dorge and F. C. Howlet, eds. (Getty Conservation Institute, 1998), pp. 2-16.

Howlet, F. C.

R. B. Hoadley, “Wood as a physical surface for paint application,” in Painted Wood: History and Conservation, V. Dorge and F. C. Howlet, eds. (Getty Conservation Institute, 1998), pp. 2-16.

Jacques, S.

S. Jacques and B. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
[CrossRef] [PubMed]

Kienle, A.

Kovalev, A. E.

A. A. Yakovenko, V. A. Yashin, A. E. Kovalev, and E. E. Fesenko, “Structure of the vibrational absorption spectra of water in the visible region,” Biophysics 47, 891-89 (2002).

Kozlowski, R.

L. Bratasz, R. Kozłowski, D. Camuffo, and E. Pagan, “Impact of indoor heating on painted wood: monitoring the altarpiece in the church of Santa Maria Maddalena in Rocca Pietore, Italy,” Stud. Conserv. 52 (3), 199-210 (2007).

Langrish, T. A. G.

J. C. F. Walker, B. G. Butterfield, T. A. G. Langrish, J. M. Harris, and J. M. Uprichard, Primary Wood Processing (Chapman & Hall, 1993).

Maris, F. A.

M. W. J. Derksen, P. J. M. van de Oetelaar, and F. A. Maris, “The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product,” J. Pharm. Biomed. Anal. 17, 473-480 (1998).
[CrossRef] [PubMed]

Martelli, F.

Moesta, K. T.

Nakano, T.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Ninomiya, M.

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, “A model of anisotropic swelling and shrinking process of wood,” Wood Sci. Technol. 35 (1-2), 167-181 (2001).
[CrossRef]

Nyström, J.

J. Nyström and E. Dahlquist, “Methods for determination of moisture content in woodchips for power plants--a review,” Fuel 83, 773-779 (2004).
[CrossRef]

Oda, M.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Ohmae, E.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Orlandi, M.

Pagan, E.

L. Bratasz, R. Kozłowski, D. Camuffo, and E. Pagan, “Impact of indoor heating on painted wood: monitoring the altarpiece in the church of Santa Maria Maddalena in Rocca Pietore, Italy,” Stud. Conserv. 52 (3), 199-210 (2007).

D. Camuffo, E. Pagan, A. Bernardi, and F. Becherini, “The impact of heating, lighting and people in re-using historical buildings: a case study,” J. Cultural Heritage 5, 409-416 (2004).
[CrossRef]

Persson, L.

Pifferi, A.

Pogue, B.

S. Jacques and B. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
[CrossRef] [PubMed]

Rinneberg, H. H.

Sassus, F.

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, “A model of anisotropic swelling and shrinking process of wood,” Wood Sci. Technol. 35 (1-2), 167-181 (2001).
[CrossRef]

Schlag, P. S.

Shimizu, K.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Shimomura, F.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Simpson, W.

W. Simpson, “Drying and control of moisture content and dimensional changes,” in “Wood Handbook: Wood as an Engineering Material,” Forest Products Laboratory (Forest Products Society, 1999), pp. 12.1-12.20.

W. Simpson and A. TenWolde, “Physical properties and moisture relations of wood,” in “Wood Handbook: Wood as an Engineering Material,” Forest Products Laboratory (Forest Products Society, 1999), pp 3.1-3.24.

Sjöholm, J.

J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
[CrossRef]

Sjöholm, M.

Somesfalean, G.

J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
[CrossRef]

Suzuki, A.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Suzuki, T.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Svanberg, S.

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, “Spectroscopic studies of wood-drying processes,” Opt. Express 14, 3641-3653 (2006).
[CrossRef] [PubMed]

J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
[CrossRef]

Taroni, P.

TenWolde, A.

W. Simpson and A. TenWolde, “Physical properties and moisture relations of wood,” in “Wood Handbook: Wood as an Engineering Material,” Forest Products Laboratory (Forest Products Society, 1999), pp 3.1-3.24.

Tsuchiya, Y.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Uprichard, J. M.

J. C. F. Walker, B. G. Butterfield, T. A. G. Langrish, J. M. Harris, and J. M. Uprichard, Primary Wood Processing (Chapman & Hall, 1993).

Valentini, G.

van de Oetelaar, P. J. M.

M. W. J. Derksen, P. J. M. van de Oetelaar, and F. A. Maris, “The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product,” J. Pharm. Biomed. Anal. 17, 473-480 (1998).
[CrossRef] [PubMed]

Wabnitz, H.

Walker, J. C. F.

J. C. F. Walker, B. G. Butterfield, T. A. G. Langrish, J. M. Harris, and J. M. Uprichard, Primary Wood Processing (Chapman & Hall, 1993).

Yakovenko, A. A.

A. A. Yakovenko, V. A. Yashin, A. E. Kovalev, and E. E. Fesenko, “Structure of the vibrational absorption spectra of water in the visible region,” Biophysics 47, 891-89 (2002).

Yamamoto, H.

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, “A model of anisotropic swelling and shrinking process of wood,” Wood Sci. Technol. 35 (1-2), 167-181 (2001).
[CrossRef]

Yamashita, Y.

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Yashin, V. A.

A. A. Yakovenko, V. A. Yashin, A. E. Kovalev, and E. E. Fesenko, “Structure of the vibrational absorption spectra of water in the visible region,” Biophysics 47, 891-89 (2002).

Yodh, A. G.

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34-40 (1995).
[CrossRef]

Zaccanti, G.

Zoia, L.

Appl. Opt. (2)

Appl. Phys. B (1)

J. Alnis, B. Anderson, J. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser spectroscopy of free molecular oxygen dispersed in wood materials,” Appl. Phys. B 77, 691-695(2003).
[CrossRef]

Appl. Spectrosc. (1)

APT Bull. (1)

D. W. Grattan, “Permanent probes for measuring moisture in wood,” APT Bull. 21 (3-4), 71-78 (1989).
[CrossRef]

Biophysics (1)

A. A. Yakovenko, V. A. Yashin, A. E. Kovalev, and E. E. Fesenko, “Structure of the vibrational absorption spectra of water in the visible region,” Biophysics 47, 891-89 (2002).

Fuel (1)

J. Nyström and E. Dahlquist, “Methods for determination of moisture content in woodchips for power plants--a review,” Fuel 83, 773-779 (2004).
[CrossRef]

J. Biomed. Opt. (1)

S. Jacques and B. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008).
[CrossRef] [PubMed]

J. Cultural Heritage (1)

D. Camuffo, E. Pagan, A. Bernardi, and F. Becherini, “The impact of heating, lighting and people in re-using historical buildings: a case study,” J. Cultural Heritage 5, 409-416 (2004).
[CrossRef]

J. Pharm. Biomed. Anal. (1)

M. W. J. Derksen, P. J. M. van de Oetelaar, and F. A. Maris, “The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product,” J. Pharm. Biomed. Anal. 17, 473-480 (1998).
[CrossRef] [PubMed]

J. Res. Natl. Bur. Stand. Sec. A (1)

L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” J. Res. Natl. Bur. Stand. Sec. A 81, 89-96 (1977).

Opt. Express (3)

Phys. Today (1)

A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34-40 (1995).
[CrossRef]

Proc. SPIE (2)

A. Bassi, A. Farina, C. D'Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Clinically-compatible time-resolved diffuse spectroscopy in the 600-1100 nm bandwidth,” Proc. SPIE 6864, 68640W (2008).
[CrossRef]

M. Oda, Y. Yamashita, T. Nakano, A. Suzuki, K. Shimizu, I. Hirano, F. Shimomura, E. Ohmae, T. Suzuki, and Y. Tsuchiya, “Near infrared time-resolved spectroscopy system for tissue oxygenation monitor,” Proc. SPIE 3597, 611-617 (1999).
[CrossRef]

Stud. Conserv. (1)

L. Bratasz, R. Kozłowski, D. Camuffo, and E. Pagan, “Impact of indoor heating on painted wood: monitoring the altarpiece in the church of Santa Maria Maddalena in Rocca Pietore, Italy,” Stud. Conserv. 52 (3), 199-210 (2007).

Wood Sci. Technol. (1)

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, “A model of anisotropic swelling and shrinking process of wood,” Wood Sci. Technol. 35 (1-2), 167-181 (2001).
[CrossRef]

Other (4)

W. Simpson and A. TenWolde, “Physical properties and moisture relations of wood,” in “Wood Handbook: Wood as an Engineering Material,” Forest Products Laboratory (Forest Products Society, 1999), pp 3.1-3.24.

W. Simpson, “Drying and control of moisture content and dimensional changes,” in “Wood Handbook: Wood as an Engineering Material,” Forest Products Laboratory (Forest Products Society, 1999), pp. 12.1-12.20.

R. B. Hoadley, “Wood as a physical surface for paint application,” in Painted Wood: History and Conservation, V. Dorge and F. C. Howlet, eds. (Getty Conservation Institute, 1998), pp. 2-16.

J. C. F. Walker, B. G. Butterfield, T. A. G. Langrish, J. M. Harris, and J. M. Uprichard, Primary Wood Processing (Chapman & Hall, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Examples of time-resolved curves at 970 nm (the maximum absorption of water) for the samples with MC (%) of 17.9 and 4.7.

Fig. 3
Fig. 3

Absorption spectra for the samples in equilibrium as a function of MC (%).

Fig. 4
Fig. 4

Scattering spectra for the samples in equilibrium as a function of MC (%).

Fig. 5
Fig. 5

Parabolic normalized absorption spectra for the samples in equilibrium as a function of MC (%).

Fig. 6
Fig. 6

Parabolic normalized absorption spectrum for the samples in equilibrium as a function of MC (%), obtained by following the second fitting procedure.

Fig. 7
Fig. 7

Absorption coefficient of the samples in equilibrium as a function of MC (%) at various wavelengths.

Fig. 8
Fig. 8

Parabolic normalized absorption spectrum obtained following the second fitting procedure for different MCs (%) of samples measured during drying.

Fig. 9
Fig. 9

Absorption coefficient as a function of MC (%) at various wavelengths of samples measured during drying.

Tables (1)

Tables Icon

Table 1 Salts used for Conditioning of Samples, Critical RH, and MC of Wood Samples a

Metrics