Abstract

Coupling the high specificity of the immunoanalytical reaction with the high sensitivity of optical wave guide light-mode spectroscopy (OWLS) detection gives the possibility to develop immunosensors with in most cases a definitely lower detection limit than traditionally used immunoassays. Measurements were performed on the sensitized surface of optical waveguide grating coupler sensors (2400  lines/mm grating). The OWLS technique is based on the precise measurement of the resonance angle of a polarized laser light (632.8nm), diffracted by a grating and incoupled into a thin waveguide. The effective refractive index, determined from the resonance incoupling angle detected at high accuracy, allows determination of layer thickness and coverage (or mass) of the adsorbed or bound material with ultrahigh sensitivity. OWLS immunosensors were developed as label-free immunosensors with an amino group modified SiO2-TiO2 sensor surface on which the immunoreactants could be anchored. One of the components of the antibody–antigen complex was chemically bound on the sensor surface, allowing noncompetitive or competitive detection of the analytes. To illustrate that the resulting immunosensors are suitable for the determination of small and large molecular weight analytes, OWLS sensor formats were applied for quantitative detection of a herbicide active ingredient trifluralin, a Fusarium mycotoxin zearalenone, and an egg yolk protein of key importance in endocrine regulation, vitellogenin.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152-155 (1983).
  2. J. J. Ramsden, “OWLS: a versatile technique for sensing with bioarrays,” Chimia 53, 67-71 (1999).
  3. K. Tiefenthaler, “Integrated optical couplers as chemical waveguide sensors,” Adv. Biosens. 2, 261-289 (1992).
  4. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
    [CrossRef] [PubMed]
  5. P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors--principles and applications to clinical chemistry,” Clin. Chim. Acta 314, 1-26 (2001).
    [CrossRef] [PubMed]
  6. G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
    [CrossRef]
  7. R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
    [CrossRef] [PubMed]
  8. F. F. Bier and R. D. Schmid, “Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection,” Biosens. Bioelectron. 9, 125-130 (1994).
    [CrossRef]
  9. H. H. Weetall and A. M. Filbert, “Porous glass for affinity chromatography applications,” Methods Enzymol. 34, 59-72(1974).
    [CrossRef] [PubMed]
  10. H. H. Weetall, “Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports,” Appl. Biochem. Biotechnol. 41, 157-188 (1993).
    [CrossRef] [PubMed]
  11. A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).
  12. B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
    [CrossRef]
  13. A. Székács, F. Jung, and B. D. Hammock, “ Chemical modification of haptens--Selective amino group protection by chromophores for an immunoassay for aminotriazoles,” in New Frontiers in Agrochemical Immunoanalysis, D. A. Kurtz, J. H. Skerritt, and L. J. Stanker, eds. (American Organization of Analytical Chemists, 1995), pp. 65-75.
  14. F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
    [CrossRef]
  15. N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001).
    [CrossRef] [PubMed]
  16. J. Ramsden, “Review of new experimental techniques for investigating random sequantial adsorption,” J. Stat. Phys. 73, 853-877 (1993).
    [CrossRef]
  17. Gy. Hegedűs, I. Bélai, and A. Székács, “Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin,” Anal. Chim. Acta 421, 121-133 (2000).
    [CrossRef]
  18. M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985).
    [PubMed]
  19. A. Székács, “Enzyme-linked immunosorbent assay for monitoring the Fusarium toxin zearalenone,” Food Technol. Biotechnol. 36, 105-110 (1998).
  20. H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
    [CrossRef]
  21. E. Harlow and D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, 1988).
  22. N. Harboe and A. Ingild, “ Immunization, isolation of immunoglobulins, estimation of antibody titre,” Scand. J. Immunol. 2, 161-164 (1973).
    [CrossRef]
  23. A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
    [CrossRef]
  24. N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
    [CrossRef]
  25. URL: http://www.microvacuum.com.

2007

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

2005

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

2003

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
[CrossRef]

2002

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
[CrossRef]

2001

P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors--principles and applications to clinical chemistry,” Clin. Chim. Acta 314, 1-26 (2001).
[CrossRef] [PubMed]

N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001).
[CrossRef] [PubMed]

2000

Gy. Hegedűs, I. Bélai, and A. Székács, “Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin,” Anal. Chim. Acta 421, 121-133 (2000).
[CrossRef]

1999

J. J. Ramsden, “OWLS: a versatile technique for sensing with bioarrays,” Chimia 53, 67-71 (1999).

1998

A. Székács, “Enzyme-linked immunosorbent assay for monitoring the Fusarium toxin zearalenone,” Food Technol. Biotechnol. 36, 105-110 (1998).

1996

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

1994

F. F. Bier and R. D. Schmid, “Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection,” Biosens. Bioelectron. 9, 125-130 (1994).
[CrossRef]

1993

R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
[CrossRef] [PubMed]

H. H. Weetall, “Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports,” Appl. Biochem. Biotechnol. 41, 157-188 (1993).
[CrossRef] [PubMed]

J. Ramsden, “Review of new experimental techniques for investigating random sequantial adsorption,” J. Stat. Phys. 73, 853-877 (1993).
[CrossRef]

1992

K. Tiefenthaler, “Integrated optical couplers as chemical waveguide sensors,” Adv. Biosens. 2, 261-289 (1992).

1985

M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985).
[PubMed]

1983

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152-155 (1983).

1974

H. H. Weetall and A. M. Filbert, “Porous glass for affinity chromatography applications,” Methods Enzymol. 34, 59-72(1974).
[CrossRef] [PubMed]

1973

N. Harboe and A. Ingild, “ Immunization, isolation of immunoglobulins, estimation of antibody titre,” Scand. J. Immunol. 2, 161-164 (1973).
[CrossRef]

Abel, A. P.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
[CrossRef]

Adányi, N.

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
[CrossRef]

N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001).
[CrossRef] [PubMed]

Bélai, I.

Gy. Hegedűs, I. Bélai, and A. Székács, “Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin,” Anal. Chim. Acta 421, 121-133 (2000).
[CrossRef]

Bier, F. F.

F. F. Bier and R. D. Schmid, “Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection,” Biosens. Bioelectron. 9, 125-130 (1994).
[CrossRef]

R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
[CrossRef] [PubMed]

Bilitewski, U.

R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
[CrossRef] [PubMed]

Bopp, M. A.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
[CrossRef]

Chan, D. W.

P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors--principles and applications to clinical chemistry,” Clin. Chim. Acta 314, 1-26 (2001).
[CrossRef] [PubMed]

Choudary, P. V.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

Duveneck, G. L.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
[CrossRef]

Ehrat, M.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
[CrossRef]

Filbert, A. M.

H. H. Weetall and A. M. Filbert, “Porous glass for affinity chromatography applications,” Methods Enzymol. 34, 59-72(1974).
[CrossRef] [PubMed]

Fujiwara, Y.

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

Fukada, H.

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

Gee, S. J.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Gilman, S. D.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Goodrow,

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Goodrow, M. H.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Gy. Hegedus,

Gy. Hegedűs, I. Bélai, and A. Székács, “Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin,” Anal. Chim. Acta 421, 121-133 (2000).
[CrossRef]

H., M.

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Hammock, B. D.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

A. Székács, F. Jung, and B. D. Hammock, “ Chemical modification of haptens--Selective amino group protection by chromophores for an immunoassay for aminotriazoles,” in New Frontiers in Agrochemical Immunoanalysis, D. A. Kurtz, J. H. Skerritt, and L. J. Stanker, eds. (American Organization of Analytical Chemists, 1995), pp. 65-75.

Hara, A.

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

Harboe, N.

N. Harboe and A. Ingild, “ Immunization, isolation of immunoglobulins, estimation of antibody titre,” Scand. J. Immunol. 2, 161-164 (1973).
[CrossRef]

Harlow, E.

E. Harlow and D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, 1988).

Harris, A.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Harrison, R. O.

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Hart, P.

M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985).
[PubMed]

Hiramatsu, N.

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

Ingild, A.

N. Harboe and A. Ingild, “ Immunization, isolation of immunoglobulins, estimation of antibody titre,” Scand. J. Immunol. 2, 161-164 (1973).
[CrossRef]

Jaeger, L.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Jäger, V.

R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
[CrossRef] [PubMed]

Jones, A. D.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Jung, F.

A. Székács, F. Jung, and B. D. Hammock, “ Chemical modification of haptens--Selective amino group protection by chromophores for an immunoassay for aminotriazoles,” in New Frontiers in Agrochemical Immunoanalysis, D. A. Kurtz, J. H. Skerritt, and L. J. Stanker, eds. (American Organization of Analytical Chemists, 1995), pp. 65-75.

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Kido, H.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Kresbach, G. M.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
[CrossRef]

Lane, D.

E. Harlow and D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, 1988).

Levkovets, I.

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

Levkovets, I. A.

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

Li, Q. X.

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Liu, M.-T.

M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985).
[PubMed]

Lucas, A.

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Lukosz, W.

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152-155 (1983).

Luppa, P. B.

P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors--principles and applications to clinical chemistry,” Clin. Chim. Acta 314, 1-26 (2001).
[CrossRef] [PubMed]

M.Váradi,

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

Maloschik, E.

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

Pestka, J. J.

M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985).
[PubMed]

Polzius, R.

R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
[CrossRef] [PubMed]

Ram, B. P.

M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985).
[PubMed]

Ramsden, J.

J. Ramsden, “Review of new experimental techniques for investigating random sequantial adsorption,” J. Stat. Phys. 73, 853-877 (1993).
[CrossRef]

Ramsden, J. J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

J. J. Ramsden, “OWLS: a versatile technique for sensing with bioarrays,” Chimia 53, 67-71 (1999).

Rodriguez-Gil, S.

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

Ronald, A.

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

S. Sundaram, K. M.

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Sanborn, J. R.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Schmid, R. D.

F. F. Bier and R. D. Schmid, “Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection,” Biosens. Bioelectron. 9, 125-130 (1994).
[CrossRef]

R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
[CrossRef] [PubMed]

Sokoll, L. J.

P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors--principles and applications to clinical chemistry,” Clin. Chim. Acta 314, 1-26 (2001).
[CrossRef] [PubMed]

Spencer, N. D.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

Stoutamire, D. W.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Sullivan, C. V.

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

Székács, A.

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
[CrossRef]

Gy. Hegedűs, I. Bélai, and A. Székács, “Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin,” Anal. Chim. Acta 421, 121-133 (2000).
[CrossRef]

A. Székács, “Enzyme-linked immunosorbent assay for monitoring the Fusarium toxin zearalenone,” Food Technol. Biotechnol. 36, 105-110 (1998).

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

A. Székács, F. Jung, and B. D. Hammock, “ Chemical modification of haptens--Selective amino group protection by chromophores for an immunoassay for aminotriazoles,” in New Frontiers in Agrochemical Immunoanalysis, D. A. Kurtz, J. H. Skerritt, and L. J. Stanker, eds. (American Organization of Analytical Chemists, 1995), pp. 65-75.

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

Szendro, I.

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
[CrossRef]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001).
[CrossRef] [PubMed]

Szurdoki, F.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Takahashi, T.

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

Textor, M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

Tiefenthaler, K.

K. Tiefenthaler, “Integrated optical couplers as chemical waveguide sensors,” Adv. Biosens. 2, 261-289 (1992).

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152-155 (1983).

Trummer, N.

A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
[CrossRef]

N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001).
[CrossRef] [PubMed]

Váradi, M.

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
[CrossRef]

N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001).
[CrossRef] [PubMed]

Vörös, J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

Weetall, H. H.

H. H. Weetall, “Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports,” Appl. Biochem. Biotechnol. 41, 157-188 (1993).
[CrossRef] [PubMed]

H. H. Weetall and A. M. Filbert, “Porous glass for affinity chromatography applications,” Methods Enzymol. 34, 59-72(1974).
[CrossRef] [PubMed]

Wengatz, I.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Wortberg, M.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Zheng, J.

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

Adv. Biosens.

K. Tiefenthaler, “Integrated optical couplers as chemical waveguide sensors,” Adv. Biosens. 2, 261-289 (1992).

Anal. Chim. Acta

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469, 49-61(2002).
[CrossRef]

Gy. Hegedűs, I. Bélai, and A. Székács, “Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin,” Anal. Chim. Acta 421, 121-133 (2000).
[CrossRef]

A. Székács, N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Development of a non-labeled immunosensor for the herbicide trifluralin via OWLS detection,” Anal. Chim. Acta 487, 31-42 (2003).
[CrossRef]

Appl. Biochem. Biotechnol.

H. H. Weetall, “Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports,” Appl. Biochem. Biotechnol. 41, 157-188 (1993).
[CrossRef] [PubMed]

Appl. Environ. Microbiol.

M.-T. Liu, B. P. Ram, P. Hart, and J. J. Pestka, “Indirect enzyme-linked immunosorbent assay for mycotoxin zearalenone,” Appl. Environ. Microbiol. 50, 332-336 (1985).
[PubMed]

Biomaterials

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23, 3699-3710 (2002).
[CrossRef] [PubMed]

Biosens. Bioelectron.

F. F. Bier and R. D. Schmid, “Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection,” Biosens. Bioelectron. 9, 125-130 (1994).
[CrossRef]

N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M.Váradi, and I. Szendrő, “Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A,” Biosens. Bioelectron. 22, 797-802 (2007).
[CrossRef]

Biotechnol. Bioeng.

R. Polzius, F. F. Bier, U. Bilitewski, V. Jäger, and R. D. Schmid, “On-line monitoring of monoclonal antibodies in animal cell culture using a grating coupler,” Biotechnol. Bioeng. 42, 1287-1292 (1993).
[CrossRef] [PubMed]

Chimia

J. J. Ramsden, “OWLS: a versatile technique for sensing with bioarrays,” Chimia 53, 67-71 (1999).

Clin. Chim. Acta

P. B. Luppa, L. J. Sokoll, and D. W. Chan, “Immunosensors--principles and applications to clinical chemistry,” Clin. Chim. Acta 314, 1-26 (2001).
[CrossRef] [PubMed]

Comp. Biochem. Physiol.

H. Fukada, Y. Fujiwara, T. Takahashi, N. Hiramatsu, C. V. Sullivan, and A. Hara, “Carp (Cyprinus carpio) vitellogenin: purification and development of a simultaneous chemiluminescent immunoassay,” Comp. Biochem. Physiol. 134, 615-623 (2003).
[CrossRef]

FEBS J.

A. Székács, E. Maloschik, I. Levkovets, N. Adányi, M. Váradi, and I. Szendrő, “ Immobilization techniques of macromolecules and small analytes onto silica surfaces for the development of optical (OWLS) immunosensors,” FEBS J. 272, 528 (2005).

Food Technol. Biotechnol.

A. Székács, “Enzyme-linked immunosorbent assay for monitoring the Fusarium toxin zearalenone,” Food Technol. Biotechnol. 36, 105-110 (1998).

Fresenius J. Anal. Chem.

N. Trummer, N. Adányi, M. Váradi, and I. Szendrő, “Modification of the surface of integrated optical wave-guide sensors for immunosensor applications,” Fresenius J. Anal. Chem. 371, 21-24 (2001).
[CrossRef] [PubMed]

J. Environ. Sci. Health B

F. Szurdoki, L. Jaeger, A. Harris, H. Kido, I. Wengatz, M. H. Goodrow, A. Székács, M. Wortberg, J. Zheng, D. W. Stoutamire, J. R. Sanborn, S. D. Gilman, A. D. Jones, S. J. Gee, P. V. Choudary, and B. D. Hammock, “ Rapid assays for environmental and biological monitoring,” J. Environ. Sci. Health B 30, 451-458 (1996).
[CrossRef]

J. Stat. Phys.

J. Ramsden, “Review of new experimental techniques for investigating random sequantial adsorption,” J. Stat. Phys. 73, 853-877 (1993).
[CrossRef]

Methods Enzymol.

H. H. Weetall and A. M. Filbert, “Porous glass for affinity chromatography applications,” Methods Enzymol. 34, 59-72(1974).
[CrossRef] [PubMed]

Scand. J. Immunol.

N. Harboe and A. Ingild, “ Immunization, isolation of immunoglobulins, estimation of antibody titre,” Scand. J. Immunol. 2, 161-164 (1973).
[CrossRef]

Other

E. Harlow and D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, 1988).

URL: http://www.microvacuum.com.

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152-155 (1983).

B. D. Hammock, S. J. Gee, R. O. Harrison, F. Jung, M. H., Goodrow, Q. X. Li, A. Lucas, A. Székács, and K. M. S. Sundaram, “Immunochemical technology in environmental analysis: Addressing critical problems,” in Immunochemical Methods for Environmental Analysis, J. Van Emon and R. O. Mumma, eds., Vol. 442 of ACS Symposium Series (American Chemical Society, 1991), pp. 112-139.
[CrossRef]

A. Székács, F. Jung, and B. D. Hammock, “ Chemical modification of haptens--Selective amino group protection by chromophores for an immunoassay for aminotriazoles,” in New Frontiers in Agrochemical Immunoanalysis, D. A. Kurtz, J. H. Skerritt, and L. J. Stanker, eds. (American Organization of Analytical Chemists, 1995), pp. 65-75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the OWLS analytical systems. An optical grating is manufactured on the waveguide surface layer of the sensor chip. A monochromatic laser beam (He–Ne 632.6 nm ) is directed to the sensor at varying angles of incidence (α) around a rotation axis. The laser beam is diffracted by the optical grating, and at a resonance angle the light is incoupled into the waveguide layer. The light intensity versus angle is detected by photodiodes. If ligand binding biomolecules alter the optical refractive index parameters of the waveguide layer, ligand binding on the surface is detectable.

Fig. 2
Fig. 2

Modification of sensor surface for protein immobilization.

Fig. 3
Fig. 3

Technical specifications of the OW 2400 sensor chips. Glass support: length ( L ) = 12 mm , width ( W ) = 8 mm , thickness ( H ) = 0.50 mm , refractive index ( n s ) = 1.53 . Waveguide film: refractive index ( n F )= 1.7 ± 0.3 , thickness ( d F )= 170 220 nm .

Fig. 4
Fig. 4

(a) Schematic illustration of sensor response calculation in the OWLS measurement. Resonance angles detected for characteristic TE and TM peaks. (b) Changes in α TM and α TE values detected as surface interactions take place. The curves include angle shift on chip in buffer (bottom, gray) and with the BSA sample injected (top, black). (c) Apparent adlayer thickness ( d F ) and refractive index ( n F ) are calculated from angle shifts and (d) are converted into sensor response (surface coverage).

Fig. 5
Fig. 5

Correlation between OWLS sensor response and molecular mass of the immobilized proteins hirudin, trypsin inhibitor, OVA, BSA, GOx, γ-globulin, and KLH (left). Sensor response displays a monotonic increase as proteins of greater molecular volume are immobilized. Proteins were applied at 0.1 μM concentration.

Fig. 6
Fig. 6

Correlation between OWLS sensor response and concentration of the immobilized protein. BSA was applied at concentrations ranging from 0.05 to 0.8 μM .

Fig. 7
Fig. 7

Detection of trifluralin by competitive OWLS immunosensor (▪) and ELISA (♦) [9]. OWLS signal response and ELISA signal are indicated on the left and right axes, respectively. The curves are of closely similar pattern (slope, plateaus), indicating that the sensor format does not alter the immunoreaction but allows a vast improvement in LOD.

Fig. 8
Fig. 8

Correlation of zearalenone determination by ELISA and competitive OWLS immunosensor in maize samples. Correlation is excellent between the two immunoanalytical methods ( r 2 = 0.988 ).

Fig. 9
Fig. 9

Detection of vitellogenin in male (♦, ▪) and female (▴,▾ ) carp (Cyprinus carpio) blood by competitive OWLS immunosensor. The arrow indicates a differentiation performance of the OWLS method for the average sensor signal between male (m) and female (f) fish.

Tables (2)

Tables Icon

Table 1 Detection of Trifluralin Spiked into Apple Juice

Tables Icon

Table 2 Detection of Zearalenone in Spiked Maize Samples

Metrics