Abstract

Calculations of the depolarization ratio, D(Θ,λ)=1S22/S11, for light scattered from an ensemble or cloud of single aerosolized spores in air were studied using the discrete dipole approximation (DDA), sometimes also called the coupled-dipole approximation. Here Sij is the appropriate Mueller matrix element for scattering angle Θ and wavelength λ. The effect of modest shape changes on D(Θ,λ) was determined. The shapes compared were prolate ellipsoids versus right circular cylinders joined smoothly to end caps consisting of hemispheres of the same diameter as the cylinder. Using the same models, the graphs of S34/S11 versus angle were compared with those for D(Θ,λ). The latter shows sensitivity to length in some cases we examined, while S34/S11 does not. Size parameters and optical constants suggested by measurements of Bacillus cereus endospores were used. An ensemble of spores was modeled with prolate spheroids. The results of this model were compared with results of a model using the same size and optical parameters, but for capped cylinders. The two models produced distinguishably different results for the same parameters. In calculations for all the graphs shown, averaging over random orientations was performed. Averaging over size distributions similar to those from experimental measurements was performed where indicated. The results show that measurements of D(Θ,λ) could be quite useful in characterizing the shape of particles in an unknown aerosol and for distinguishing between two likely shapes, but not to reconstruct the shapes from the graphs alone without additional information.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription