Abstract

When imaging through turbid media, objects are often blurred by scattered light. An optical collimator (i.e., an angular filter array) improves images by accepting only photons propagating within a narrow solid angle about the direction of the incident light. These photons are expected to participate in a limited number of small-angle scattering events, maintaining their original propagation direction and, finally, contributing to the development of a faithful image of an object within a turbid medium. The collimation method, also referred to as angular domain imaging (ADI), applies to a see-through configuration where the incident collimated light beam can be aligned with the collimator in a transillumination mode of operation. In this paper, we present angular domain optical projection tomography (ADOPT), a method that can extract depth information of optical contrast in turbid media with high longitudinal resolution based on ADI technology. The resolution of the ADI system has been tested over various depths in a 5cm optical cuvette using a resolution target suspended in a homogeneous turbid medium. The ADOPT system reconstructed images from a series of angular domain projections collected at angular intervals. The system was used to measure the attenuation of an absorbing target in transmission mode (t-ADOPT) and to measure the light emitting from a fluorescent target (f-ADOPT). Tissue-mimicking phantoms were used to validate the performance of the method. In the t-ADOPT configuration, a background scattered light estimation and subtraction methodology was introduced to improve the imaging contrast. A target consisting of two graphite rods (0.9mm diameter) was suspended in the cuvette by a rotation stage. An Indocyanine Green-filled glass rod was used as an imaging target in the f-ADOPT arrangement. The target was placed in a manner such that the line of laser light was perpendicular to the longitudinal axis of the rods. Several projections were collected at increments of 1.8° and compiled into a sinogram. A transverse image was reconstructed from the sinogram by using filtered backprojection and image contrast was improved by experimental scatter measurements using a wedge prism and an image processing algorithm. The submillimeter target embedded in a 2cm thick scattering medium (reduced scattering coefficient 2.4cm1) was discernable in both the sinograms and the reconstructed images. In the f-ADOPT system, fluorescent line targets <1cm in diameter embedded in a 2cm thick scattering medium (reduced scattering coefficient 0.8cm1) were discernable in both the sinograms and the reconstructed images. The proposed method could be used as the basis to construct an optical tomographic scanner for simultaneous absorption and fluorescence-based imaging of biological specimens (i.e., up to 7mm across).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175-181 (2003).
    [CrossRef]
  2. V.V.Tuchin, ed., Handbook of Optical Biomedical Diagnostics (SPIE Press2002).
  3. G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721 (1987).
    [CrossRef]
  4. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
    [CrossRef]
  5. J. R. Walls, “Improving optical projection tomography for three-dimensional imaging of the embryonic mouse,” Ph.D. dissertation (University of Toronto, 2008), http://www.proquest.com, Publication AAT NR39864.
  6. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2, 797-804 (2007).
    [CrossRef]
  7. M. O'Leary, D. Boas, B. Chance, and A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426-428(1995).
    [CrossRef]
  8. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
    [CrossRef]
  9. W. Cai, S. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237-4246 (1999).
    [CrossRef]
  10. M. R. Hee, J. Izzat, J. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950-952 (1993).
    [CrossRef]
  11. H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204-209 (2000).
    [CrossRef]
  12. S. B. Colak, D. G. Papaioannou, G. W. 't Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180-213 (1997).
    [CrossRef]
  13. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light,” Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef]
  14. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911(2003).
    [CrossRef]
  15. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  16. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158-160 (1996).
    [CrossRef]
  17. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
    [CrossRef]
  18. M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
    [CrossRef]
  19. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411(2005).
    [CrossRef]
  20. A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett. 33, 470-472 (2008).
    [CrossRef]
  21. G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
    [CrossRef]
  22. F. Vasefi, B. Kaminska, P. K. Y. Chan, and G. H. Chapman, “Multi-spectral angular domain optical imaging in biological tissues using diode laser sources,” Opt. Express 16, 14456-14468 (2008).
    [CrossRef]
  23. F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
    [CrossRef]
  24. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492-21504(2008).
    [CrossRef]
  25. F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
    [CrossRef]
  26. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging,” Proc. SPIE 7175, 717509 (2009).
    [CrossRef]
  27. F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
    [CrossRef]
  28. N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
    [CrossRef]
  29. S. Jacques, “Optical properties of “Intralipid”, an aqueous suspension of lipid droplets,” http://omlc.ogi.edu/spectra/intralipid/index.html.
  30. H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers,” Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef]

2009

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging,” Proc. SPIE 7175, 717509 (2009).
[CrossRef]

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
[CrossRef]

2008

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
[CrossRef]

A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett. 33, 470-472 (2008).
[CrossRef]

F. Vasefi, B. Kaminska, P. K. Y. Chan, and G. H. Chapman, “Multi-spectral angular domain optical imaging in biological tissues using diode laser sources,” Opt. Express 16, 14456-14468 (2008).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492-21504(2008).
[CrossRef]

2007

F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2, 797-804 (2007).
[CrossRef]

2005

2003

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911(2003).
[CrossRef]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175-181 (2003).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
[CrossRef]

2002

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

2001

2000

H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204-209 (2000).
[CrossRef]

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
[CrossRef]

1999

M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
[CrossRef]

W. Cai, S. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237-4246 (1999).
[CrossRef]

1997

1996

1995

1993

1991

1987

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721 (1987).
[CrossRef]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Alfano, R.

Alfano, R. R.

M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
[CrossRef]

Alrubaiee, M.

M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
[CrossRef]

W. Cai, S. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38, 4237-4246 (1999).
[CrossRef]

Bacskai, B. J.

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Baran Das, B.

M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
[CrossRef]

Boas, D.

Boas, D. A.

Cai, W.

Carson, J. J. L.

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging,” Proc. SPIE 7175, 717509 (2009).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492-21504(2008).
[CrossRef]

Chan, P.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

Chan, P. K. Y.

F. Vasefi, B. Kaminska, P. K. Y. Chan, and G. H. Chapman, “Multi-spectral angular domain optical imaging in biological tissues using diode laser sources,” Opt. Express 16, 14456-14468 (2008).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

Chance, B.

Chapman, G. H.

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging,” Proc. SPIE 7175, 717509 (2009).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492-21504(2008).
[CrossRef]

F. Vasefi, B. Kaminska, P. K. Y. Chan, and G. H. Chapman, “Multi-spectral angular domain optical imaging in biological tissues using diode laser sources,” Opt. Express 16, 14456-14468 (2008).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
[CrossRef]

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
[CrossRef]

Chen, K.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
[CrossRef]

Chu, G.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
[CrossRef]

Colak, S. B.

Dasari, R. R.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
[CrossRef]

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Eppstein, M. J.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Feld, M. S.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
[CrossRef]

Fujimoto, J. G.

Gayen, S.

Gayen, S. K.

M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
[CrossRef]

Gemert, M.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721 (1987).
[CrossRef]

Godavarty, A.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Graves, E. E.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911(2003).
[CrossRef]

Gurfinkel, M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Hecksher-Sorensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Hee, M. R.

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Iftimia, N.

Izzat, J.

Jacobson, J.

Jacques, S.

S. Jacques, “Optical properties of “Intralipid”, an aqueous suspension of lipid droplets,” http://omlc.ogi.edu/spectra/intralipid/index.html.

Jiang, H.

Kaminska, B.

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging,” Proc. SPIE 7175, 717509 (2009).
[CrossRef]

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492-21504(2008).
[CrossRef]

F. Vasefi, B. Kaminska, P. K. Y. Chan, and G. H. Chapman, “Multi-spectral angular domain optical imaging in biological tissues using diode laser sources,” Opt. Express 16, 14456-14468 (2008).
[CrossRef]

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

Kumar, A. T. N.

Lax, M.

Lee, D.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
[CrossRef]

Li, X. D.

Maslov, K.

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2, 797-804 (2007).
[CrossRef]

Melissen, J. B. M.

Moes, C. J. M.

Motamedi, M.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721 (1987).
[CrossRef]

Ng, E.

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411(2005).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911(2003).
[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
[CrossRef]

O'Leary, M.

O'Leary, M. A.

Paasschens, J. C. J.

Papaioannou, D. G.

Perelman, L. T.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
[CrossRef]

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Pfeiffer, N.

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
[CrossRef]

Prahl, S. A.

Raymond, S. B.

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411(2005).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911(2003).
[CrossRef]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Schomberg, H.

Sevick-Muraca, E. M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Sharpe, J.

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175-181 (2003).
[CrossRef]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Soubret, A.

Swanson, E. A.

't Hooft, G. W.

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Thompson, A. B.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Trinh, M.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
[CrossRef]

Turner, G. M.

van Asten, N. A. A. J.

van der Mark, M. B.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. G.

Vasefi, F.

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging,” Proc. SPIE 7175, 717509 (2009).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492-21504(2008).
[CrossRef]

F. Vasefi, B. Kaminska, P. K. Y. Chan, and G. H. Chapman, “Multi-spectral angular domain optical imaging in biological tissues using diode laser sources,” Opt. Express 16, 14456-14468 (2008).
[CrossRef]

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
[CrossRef]

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

Walls, J. R.

J. R. Walls, “Improving optical projection tomography for three-dimensional imaging of the embryonic mouse,” Ph.D. dissertation (University of Toronto, 2008), http://www.proquest.com, Publication AAT NR39864.

Wang, L. V.

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2, 797-804 (2007).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911(2003).
[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Welch, A.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721 (1987).
[CrossRef]

Xu, M.

Xu, Y.

Yodh, A.

Yodh, A. G.

Yoon, G.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721 (1987).
[CrossRef]

Zacharakis, G.

Zevallos, M.

Zevallos, M. E.

M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
[CrossRef]

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Zhang, H. F.

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2, 797-804 (2007).
[CrossRef]

Zhang, Q.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23, 1721 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. E. Zevallos, S. K. Gayen, B. Baran Das, M. Alrubaiee, and R. R. Alfano, “Picosecond electronic time-gated imaging of bones in tissues,” IEEE J. Sel. Top. Quantum Electron. 5, 916-922 (1999).
[CrossRef]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9, 257-266 (2003).
[CrossRef]

F. Vasefi, P. K. Y. Chan, B. Kaminska, G. H. Chapman, and N. Pfeiffer, “An optical imaging technique using deep illumination in the angular domain,” IEEE J. Sel. Top. Quantum Electron. 13, 1610-1620 (2007).
[CrossRef]

J Biomed. Opt.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J Biomed. Opt. 5, 144-154(2000).
[CrossRef]

J. Anat.

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175-181 (2003).
[CrossRef]

Med. Phys.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911(2003).
[CrossRef]

Nat. Biotechnol.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

Nature Protocols

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nature Protocols 2, 797-804 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef]

Proc. SPIE

F. Vasefi, G. H. Chapman, P. K. Y. Chan, B. Kaminska, and N. Pfeiffer, “Enhanced angular domain optical imaging by background scattered light subtraction from a deviated laser source,” Proc. SPIE 6854, 68541E (2008).
[CrossRef]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging,” Proc. SPIE 7175, 717509 (2009).
[CrossRef]

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain fluorescent lifetime imaging in turbid media,” Proc. SPIE 7183, 71830I (2009).
[CrossRef]

N. Pfeiffer, P. Chan, G. H. Chapman, F. Vasefi, and B. Kaminska, “Optical imaging of structures within highly scattering material using a lens and aperture to form a spatiofrequency filter,” Proc. SPIE 6854, 68541D (2008).
[CrossRef]

Science

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541-545 (2002).
[CrossRef]

Other

J. R. Walls, “Improving optical projection tomography for three-dimensional imaging of the embryonic mouse,” Ph.D. dissertation (University of Toronto, 2008), http://www.proquest.com, Publication AAT NR39864.

V.V.Tuchin, ed., Handbook of Optical Biomedical Diagnostics (SPIE Press2002).

S. Jacques, “Optical properties of “Intralipid”, an aqueous suspension of lipid droplets,” http://omlc.ogi.edu/spectra/intralipid/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

ADI system diagram in transillumination mode. The AFA must be designed with a sufficiently high aspect ratio, length (L) over opening width (W), to provide the small acceptance angle and filter scattered photons. Optional wedge prism can be used to estimate background noise to enhance the tomographic image.

Fig. 2
Fig. 2

System for transillumination angular domain optical projection tomography system (t-ADOPT).

Fig. 3
Fig. 3

System for fluorescent emission angular domain optical projection tomography (f-ADOPT).

Fig. 4
Fig. 4

Angular domain imaging with the L-shaped resolution targets placed in various positions in a 5 cm optical cuvette with scattering medium ( μ s = 0.8 cm 1 , μ a = 0.01 cm 1 ): (a) front position, 0 cm and closest to AFA, (b) middle position, 2.5 cm , and (c) back position, 5 cm and farthest from the AFA. The L-shape test structures had line thicknesses of 150, 200, 300, and 400 μm .

Fig. 5
Fig. 5

Angular domain optical projection scans in t-ADOPT. Sinogram scan of two 0.9 mm diameter graphite rods suspended in a 2 cm optical cell filled with (a) water, (b) 0.25% Intralipid with μ s = 2 cm 1 μ a = 0.01 cm 1 , (c) 0.3% Intralipid with μ s = 2.4 cm 1 , μ a = 0.01 cm 1 , and (d) 0.35% Intralipid with μ s = 2.8 cm 1 , μ a = 0.01 cm 1 . Each sinogram represents a 360 ° rotation with 200 steps. The field of view was approximately 13 mm . (e) Contrast-enhanced t-ADOPT sinogram of (c) at the detection limit with 0.3% Intralipid.

Fig. 6
Fig. 6

Reconstructed t-ADOPT images of two 0.9 mm diameter graphite rods suspended in a 2 cm optical cell filled with (a) water, (b) 0.25% Intralipid ( μ s = 2 cm 1 , μ a = 0.01 cm 1 ), and (c) 0.3% Intralipid ( μ s = 2.4 cm 1 , μ a = 0.01 cm 1 ). (d) Contrast-enhanced t-ADOPT images of (c) using the wedge subtraction process.

Fig. 7
Fig. 7

f-ADOPT sinogram images of a glass tube (inside diameter, 1.13 mm ) filled with 20 μM ICG in a 2 cm optical cell filled with (a) water and (b) 0.1% Intralipid ( μ s = 0.8 cm 1 , μ a = 0.01 cm 1 ). (c) Reconstructed f-ADOPT image corresponding to (a). (d) Reconstructed f-ADOPT image corresponding to (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Contrast Ratio [ % ] = mean ( I max ) mean ( I min ) mean ( I max ) + mean ( I min ) × 100 ,

Metrics