Abstract

We describe a precision grinding procedure that allows treating a previously etched fiber tip to conform to predefined shapes, including hemispherical and axial conical (axicon) lenses. The grinding method is based on mechanical polishing with the fiber tip moving in a translational mode inside a conical polishing surface. The grinding procedure is performed in a homemade scanning probe microscope equipped with a shear-force sensor based on a piezoelectric tuning fork as well as with capacitor position sensors. The scanning probe microscope is operated either as atomic force microscope for topographic characterization of the tip shape and the polishing surface or as a scanning near-field microscope for measurement of the light focusing properties of the ground microlenses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159-161(1994).
    [CrossRef] [PubMed]
  2. G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
    [CrossRef]
  3. G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025-2027 (2004).
    [CrossRef]
  4. D. J. Hwang, H. Jeon, and C. P. Grigoropoulos, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118(2007).
    [CrossRef]
  5. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
    [CrossRef]
  6. J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
  7. P. Moar, F. Ladouceur, and L. Cahill, “Numerical analysis of the transmission efficiency of heat-drawn and chemically etched scanning near-field optical microscopes,” Appl. Opt. 39, 1966-1972 (2000).
    [CrossRef]
  8. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
    [CrossRef] [PubMed]
  9. Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
    [CrossRef]
  10. D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313-314 (2007).
    [CrossRef]
  11. H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425-426 (1981).
    [CrossRef]
  12. M. Kawachi and T. Edahiro, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72(1982).
    [CrossRef]
  13. Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007).
    [CrossRef]
  14. S. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng. 29, 146-150 (2005).
    [CrossRef]
  15. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061-8067 (2007).
    [CrossRef] [PubMed]
  16. S. Yakunin, J. Heitz, and T. Steher, “Verfahren zum Schleifen einer Mikrolinse am Ende einer optischen Faser,” Austrian patent application AT869/2009 (application data June 2009).
  17. S. Yakunin, T. Stehrer, J. D. Pedarnig, and J. Heitz, “Combination of laser-based nano-processing and micro-analysis by means of a lensed optical fiber,” J. Optoelectron. Adv. Mater. (to be published).
  18. R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
    [CrossRef]
  19. P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
    [CrossRef]
  20. A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

2009 (2)

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

2008 (2)

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
[CrossRef]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

2007 (4)

D. J. Hwang, H. Jeon, and C. P. Grigoropoulos, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118(2007).
[CrossRef]

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313-314 (2007).
[CrossRef]

Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007).
[CrossRef]

T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061-8067 (2007).
[CrossRef] [PubMed]

2005 (1)

S. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng. 29, 146-150 (2005).
[CrossRef]

2004 (1)

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025-2027 (2004).
[CrossRef]

2001 (1)

G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

1998 (1)

A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

1996 (1)

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

1994 (1)

1982 (1)

M. Kawachi and T. Edahiro, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72(1982).
[CrossRef]

1981 (1)

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425-426 (1981).
[CrossRef]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

Bäuerle, D.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313-314 (2007).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025-2027 (2004).
[CrossRef]

G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
[CrossRef]

Berdunov, N. V.

A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

Bose, R.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Brandstetter, T.

G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
[CrossRef]

Brodoceanu, D.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313-314 (2007).
[CrossRef]

Bukharaev, A. A.

A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

Cahill, L.

Chang, C.-H.

Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007).
[CrossRef]

Charraut, D.

Dai, S. T.

G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
[CrossRef]

Davies, M. C.

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

Deckert, V.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Edahiro, T.

M. Kawachi and T. Edahiro, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72(1982).
[CrossRef]

Fokas, C.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Grigoropoulos, C. P.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
[CrossRef]

D. J. Hwang, H. Jeon, and C. P. Grigoropoulos, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118(2007).
[CrossRef]

Grosjean, T.

Hecht, B.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Heitz, J.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025-2027 (2004).
[CrossRef]

G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
[CrossRef]

S. Yakunin, J. Heitz, and T. Steher, “Verfahren zum Schleifen einer Mikrolinse am Ende einer optischen Faser,” Austrian patent application AT869/2009 (application data June 2009).

S. Yakunin, T. Stehrer, J. D. Pedarnig, and J. Heitz, “Combination of laser-based nano-processing and micro-analysis by means of a lensed optical fiber,” J. Optoelectron. Adv. Mater. (to be published).

Hong, B. H.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Hung, T.-Y.

Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007).
[CrossRef]

Hwang, D. J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
[CrossRef]

D. J. Hwang, H. Jeon, and C. P. Grigoropoulos, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118(2007).
[CrossRef]

Hwang, In-Ch.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Ibrahim, I. A.

Inouye, Y.

Jackson, D. E.

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

Jeon, H.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
[CrossRef]

D. J. Hwang, H. Jeon, and C. P. Grigoropoulos, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118(2007).
[CrossRef]

Jouravlev, M. V.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Kaufman, L. J.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Kawachi, M.

M. Kawachi and T. Edahiro, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72(1982).
[CrossRef]

Kawata, S.

Kim, K. S.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Kim, Ph.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Kim, W. Y.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Kim, Yu.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Ladouceur, F.

Landström, L.

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313-314 (2007).
[CrossRef]

Lee, Ju. Y.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Lin, S.

S. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng. 29, 146-150 (2005).
[CrossRef]

Liu, J.-H.

Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007).
[CrossRef]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

Min, S. K.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Moar, P.

Ovchinnikov, D. V.

A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

Pedarnig, J. D.

S. Yakunin, T. Stehrer, J. D. Pedarnig, and J. Heitz, “Combination of laser-based nano-processing and micro-analysis by means of a lensed optical fiber,” J. Optoelectron. Adv. Mater. (to be published).

Piquerey, V.

Roberts, C. J.

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

Russo, R. E.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
[CrossRef]

Sakaguchi, H.

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425-426 (1981).
[CrossRef]

Saleh, S. S.

Salikhov, K. M.

A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

Sandoz, P.

Seki, N.

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425-426 (1981).
[CrossRef]

Shakesheff, K. M.

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

Sick, B.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Steher, T.

S. Yakunin, J. Heitz, and T. Steher, “Verfahren zum Schleifen einer Mikrolinse am Ende einer optischen Faser,” Austrian patent application AT869/2009 (application data June 2009).

Stehrer, T.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).

S. Yakunin, T. Stehrer, J. D. Pedarnig, and J. Heitz, “Combination of laser-based nano-processing and micro-analysis by means of a lensed optical fiber,” J. Optoelectron. Adv. Mater. (to be published).

Stockle, R.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Suarez, M. A.

Tendler, S. J. B.

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

Tseng, Y.-T.

Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007).
[CrossRef]

Wild, U. P.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Williams, P. M.

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

Wong, Ch. W.

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Wysocki, G.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025-2027 (2004).
[CrossRef]

G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
[CrossRef]

Yakunin, S.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).

S. Yakunin, T. Stehrer, J. D. Pedarnig, and J. Heitz, “Combination of laser-based nano-processing and micro-analysis by means of a lensed optical fiber,” J. Optoelectron. Adv. Mater. (to be published).

S. Yakunin, J. Heitz, and T. Steher, “Verfahren zum Schleifen einer Mikrolinse am Ende einer optischen Faser,” Austrian patent application AT869/2009 (application data June 2009).

Yamamoto, S.

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425-426 (1981).
[CrossRef]

Yoo, J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
[CrossRef]

Zenobi, R.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313-314 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025-2027 (2004).
[CrossRef]

D. J. Hwang, H. Jeon, and C. P. Grigoropoulos, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118(2007).
[CrossRef]

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999).
[CrossRef]

Electron. Lett. (2)

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425-426 (1981).
[CrossRef]

M. Kawachi and T. Edahiro, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72(1982).
[CrossRef]

Int. J. Mach. Tools Manuf. (1)

Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007).
[CrossRef]

J. Appl. Phys. (1)

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996).
[CrossRef]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

Nature (1)

Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009).
[CrossRef]

Opt. Lett. (1)

Precis. Eng. (1)

S. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng. 29, 146-150 (2005).
[CrossRef]

Proc. SPIE (1)

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).

Scanning Microsc. (1)

A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

Other (2)

S. Yakunin, J. Heitz, and T. Steher, “Verfahren zum Schleifen einer Mikrolinse am Ende einer optischen Faser,” Austrian patent application AT869/2009 (application data June 2009).

S. Yakunin, T. Stehrer, J. D. Pedarnig, and J. Heitz, “Combination of laser-based nano-processing and micro-analysis by means of a lensed optical fiber,” J. Optoelectron. Adv. Mater. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microgrinding AFM–SNOM setup. 1, nanopositioning stage; 2, optical fiber tip; 3, tuning fork; 4, sample; 5, digital microscopes; 6, photodiode.

Fig. 2
Fig. 2

(a) Indentation cross section and geometry of the grinding process. 1, optical fiber tip; 2, polishing paper; α, slope angle of the surface in the polishing hole. (b) Sketch for estimation of the resulting curvature radius of the polished lens. α, resulting polishing angle between the surfaces I and I I [equivalent to α in (a)]; β, full angle of the initial tip cone; I and I I , tip surfaces obtained at first and second polishing step with grinding depths A and B, respectively; R, tip radius; thin and thick solid lines, initial and final tip shape, respectively. The dotted circle is a sphere inscribed over the resulting fiber tip.

Fig. 3
Fig. 3

(a) and (b) Tips polished to hemispherical shape with a curvature radius of 1 and 3 μm , respectively; (c) tip polished to axicon shape.

Fig. 4
Fig. 4

Schematics of the convolution of the fiber tip profile, 1, with a rectangular step-height etalon profile, 2, to the recorded AFM topography, 3.

Fig. 5
Fig. 5

Tip profile restored by deconvolution: circles, experimental data; solid curve, fit with the model of a spherical tip shape; R, fitted radius of curvature. In the inset we show a microscopic image of the same tip together with circle of radius R = 3 μm (dashed circle).

Fig. 6
Fig. 6

FWHM of beam profile as function of the tip-to-pinhole distance Z for different tip geometries: ground hemispherical tip (filled circles) and chemically etched tip (open squares).

Fig. 7
Fig. 7

FWHM of beam profile as function of the tip-to-pinhole distance Z for axicon tip shape.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A = R ( 1 sin ( β / 2 ) 1 ) ,
α = π β 4 ,
B = R cos ( α ) 2 ( 1 cos ( α ) ) .

Metrics