Abstract

The trapping efficiency and stiffness of optical tweezers using radial polarization are evaluated; the ray-tracing method and a proposed measurement method are used for numerical and experimental analyses, respectively. The maximum axial trapping efficiency with radial polarization is 1.84 times that with linear polarization, while the maximum transverse trapping efficiency decreases by 0.58 times. Further, the axial and transverse trapping efficiencies are found to be 1.19 times larger and 0.83 times smaller, respectively, than the values with linear polarization. From the experiments, the axial and transverse stiffness values are 1.2 times larger and 0.8 times smaller, respectively, with radial polarization. Hence, radial polarization enhances the axial trapping properties while reducing the transverse trapping properties.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkolm, and S. Chu, “Observation of a single-beam gradient force optical path for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
    [CrossRef]
  2. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348-352 (1990).
    [CrossRef]
  3. K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
    [CrossRef]
  4. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994).
    [CrossRef]
  5. E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997).
    [CrossRef]
  6. M. Michihata, Y. Nagasaka, T. Hayashi, and Y. Takaya, “Probing technique using circular motion of a microsphere controlled by optical pressure for a nanocoordinate measuring machine,” Appl. Opt. 48, 198-205 (2009).
    [CrossRef]
  7. T. Hariyama, Y. Takaya, and T. Miyoshi, “New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure,” Proc. SPIE 5993, 59930P(2005).
    [CrossRef]
  8. Q. Zhan, “Efficient extracavity generation of radially and azimuthally polarized beams,” J. Opt. A Pure Appl. Opt. 5, 229-232 (2003).
    [CrossRef]
  9. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
    [CrossRef]
  10. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839-1841 (2007).
    [CrossRef]
  11. T. A. Nieminen, N. R. Heckenberg, and H. R. Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122-124 (2008).
    [CrossRef]
  12. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377-3382 (2004).
    [CrossRef]
  13. T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Jena) 102, 181-190 (1996).
  14. J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).
  15. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7-9 (1998).
    [CrossRef]
  16. D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shapes and size,” J. Opt. A Pure Appl. Opt. 9, S228-S234 (2007).
    [CrossRef]
  17. R. C. Gauthier, “Computation of the optical trapping force single an FDTD based technique,” Opt. Express 13, 3707-3718 (2005).
    [CrossRef]
  18. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
    [CrossRef]
  19. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
    [CrossRef]
  20. R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996).
    [CrossRef]
  21. K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612 (2004).
    [CrossRef]
  22. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattering light,” Appl. Opt. 35, 7112-7116 (1996).
    [CrossRef]
  23. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994).
    [CrossRef]
  24. Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000).
    [CrossRef]
  25. Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005).
    [CrossRef]
  26. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468-1470 (2007).
    [CrossRef]
  27. A. R. Zakharian, P. Polynkin, M. Mansuripur, and J. V. Moloney, “Single-beam trapping of micro-beads in polarized light: Numerical simulations,” Opt. Express 14, 3660-3676 (2006).
    [CrossRef]
  28. Y. Kawata and W. Inami, “Confocal microsphere for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648-6650 (1998).
    [CrossRef]

2009 (1)

2008 (1)

2007 (4)

2006 (1)

2005 (3)

Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005).
[CrossRef]

T. Hariyama, Y. Takaya, and T. Miyoshi, “New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure,” Proc. SPIE 5993, 59930P(2005).
[CrossRef]

R. C. Gauthier, “Computation of the optical trapping force single an FDTD based technique,” Opt. Express 13, 3707-3718 (2005).
[CrossRef]

2004 (2)

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377-3382 (2004).
[CrossRef]

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

2003 (2)

Q. Zhan, “Efficient extracavity generation of radially and azimuthally polarized beams,” J. Opt. A Pure Appl. Opt. 5, 229-232 (2003).
[CrossRef]

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
[CrossRef]

2000 (1)

Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000).
[CrossRef]

1999 (1)

J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).

1998 (3)

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7-9 (1998).
[CrossRef]

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Y. Kawata and W. Inami, “Confocal microsphere for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648-6650 (1998).
[CrossRef]

1997 (1)

E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997).
[CrossRef]

1996 (3)

M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattering light,” Appl. Opt. 35, 7112-7116 (1996).
[CrossRef]

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996).
[CrossRef]

T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Jena) 102, 181-190 (1996).

1994 (2)

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994).
[CrossRef]

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef]

1990 (1)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348-352 (1990).
[CrossRef]

1986 (1)

Abbondanzieri, E. A.

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
[CrossRef]

Allen, L.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkolm, and S. Chu, “Observation of a single-beam gradient force optical path for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
[CrossRef]

Bai, J.

J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).

Berg-Sorensen, K.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

Berns, M. W.

Bjorkolm, J. E.

Block, S. M.

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
[CrossRef]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348-352 (1990).
[CrossRef]

Bonessi, D.

D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shapes and size,” J. Opt. A Pure Appl. Opt. 9, S228-S234 (2007).
[CrossRef]

Bonin, K.

D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shapes and size,” J. Opt. A Pure Appl. Opt. 9, S228-S234 (2007).
[CrossRef]

Chu, , and S.

Dearden, E. W.

Dejima, S.

Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005).
[CrossRef]

Dholakia, K.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Ding, Z.

Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000).
[CrossRef]

Dunlop, H. R.

Dziedzic, J. M.

Florin, E. L.

E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997).
[CrossRef]

Flyvbjerg, H.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

Friese, M. E. J.

Gauthier, R. C.

Gelles, J.

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994).
[CrossRef]

Gittes, F.

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348-352 (1990).
[CrossRef]

Hariyama, T.

T. Hariyama, Y. Takaya, and T. Miyoshi, “New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure,” Proc. SPIE 5993, 59930P(2005).
[CrossRef]

Hayashi, T.

Heckenberg, N. R.

Hörber, J. K. H.

E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997).
[CrossRef]

Imai, K.

Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005).
[CrossRef]

Inami, W.

Y. Kawata and W. Inami, “Confocal microsphere for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648-6650 (1998).
[CrossRef]

Jackel, S.

Kawata, Y.

Y. Kawata and W. Inami, “Confocal microsphere for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648-6650 (1998).
[CrossRef]

Kawauchi, H.

Kobayashi, T.

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996).
[CrossRef]

Kozawa, Y.

Lai, G.

Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000).
[CrossRef]

Landick, R.

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
[CrossRef]

Lumer, Y.

Machavariani, G.

Mansuripur, M.

McGloin, D.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Meir, A.

Michihata, M.

Miyamoto, S.

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996).
[CrossRef]

Miyoshi, T.

Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005).
[CrossRef]

T. Hariyama, Y. Takaya, and T. Miyoshi, “New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure,” Proc. SPIE 5993, 59930P(2005).
[CrossRef]

J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).

Moloney, J. V.

Moshe, I.

Nagasaka, Y.

Neuman, K. C.

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
[CrossRef]

Nieminen, T. A.

Omori, R.

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996).
[CrossRef]

Padgett, M. J.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Polynkin, P.

Pralle, A.

E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997).
[CrossRef]

Rosin, A.

T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Jena) 102, 181-190 (1996).

Rubinsztein-Dunlop, H.

Sakakibara, T.

Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000).
[CrossRef]

Sato, S.

Schmidt, C. F.

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348-352 (1990).
[CrossRef]

Shinohara, S.

Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000).
[CrossRef]

Simpson, N. B.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

Sonek, G. J.

Stelzer, E. H. K.

E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997).
[CrossRef]

T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Jena) 102, 181-190 (1996).

Suzuki, A.

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996).
[CrossRef]

Switz, N. A.

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994).
[CrossRef]

Takahashi, S.

J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).

Takaya, Y.

M. Michihata, Y. Nagasaka, T. Hayashi, and Y. Takaya, “Probing technique using circular motion of a microsphere controlled by optical pressure for a nanocoordinate measuring machine,” Appl. Opt. 48, 198-205 (2009).
[CrossRef]

T. Hariyama, Y. Takaya, and T. Miyoshi, “New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure,” Proc. SPIE 5993, 59930P(2005).
[CrossRef]

Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005).
[CrossRef]

J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).

Walker, T.

D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shapes and size,” J. Opt. A Pure Appl. Opt. 9, S228-S234 (2007).
[CrossRef]

Webb, W. W.

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994).
[CrossRef]

Wohland, T.

T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Jena) 102, 181-190 (1996).

Wright, W. H.

Yan, S.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Yao, B.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Yonezawa, K.

Zakharian, A. R.

Zhan, Q.

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377-3382 (2004).
[CrossRef]

Q. Zhan, “Efficient extracavity generation of radially and azimuthally polarized beams,” J. Opt. A Pure Appl. Opt. 5, 229-232 (2003).
[CrossRef]

Appl. Opt. (3)

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef]

Cell (1)

K. C. Neuman, E. A. Abbondanzieri, R. Landick, J. Gelles, and S. M. Block, “Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking cell,” Cell 115, 437-447 (2003).
[CrossRef]

CIRP Annals (1)

Y. Takaya, K. Imai, S. Dejima, and T. Miyoshi, “Nano-position sensing using optically motion-controlled microprobe with PSD based on laser trapping technique,” CIRP Annals 54, 467-470 (2005).
[CrossRef]

Int. J. Jpn. Soc. Prec. Eng. (1)

J. Bai, T. Miyoshi, Y. Takaya, and S. Takahashi, “Computer simulation for laser trapping on micro-particles with arbitrary shapes,” Int. J. Jpn. Soc. Prec. Eng. 33, 363-368 (1999).

J. Appl. Phys. (1)

Z. Ding, G. Lai, T. Sakakibara, and S. Shinohara, “Determination of the spring constant of an optical trap by external sinusoidal excitation and lock-in detection,” J. Appl. Phys. 88, 737-741 (2000).
[CrossRef]

J. Mod. Opt. (1)

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased vertical trapping efficiency,” J. Mod. Opt. 45, 1943-1949 (1998).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shapes and size,” J. Opt. A Pure Appl. Opt. 9, S228-S234 (2007).
[CrossRef]

Q. Zhan, “Efficient extracavity generation of radially and azimuthally polarized beams,” J. Opt. A Pure Appl. Opt. 5, 229-232 (2003).
[CrossRef]

J. Struct. Biol. (1)

E. L. Florin, A. Pralle, J. K. H. Hörber, and E. H. K. Stelzer, “Photonic force microscope based on optical tweezers and two-photon excitation for biological applications,” J. Struct. Biol. 119, 202-211 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kawata and W. Inami, “Confocal microsphere for three-dimensional polarization analysis,” Jpn. J. Appl. Phys. 37, 6648-6650 (1998).
[CrossRef]

Nature (1)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348, 348-352 (1990).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Rev. (1)

R. Omori, T. Kobayashi, S. Miyamoto, and A. Suzuki, “Measurements of optical trapping efficiency for micron-sized dielectric particles in various surrounding media,” Opt. Rev. 3, 11-13 (1996).
[CrossRef]

Optik (Jena) (1)

T. Wohland, A. Rosin, and E. H. K. Stelzer, “Theoretical determination of the influence of the polarization on forces exerted by optical tweezers,” Optik (Jena) 102, 181-190 (1996).

Phys. Rev. A (1)

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Proc. SPIE (1)

T. Hariyama, Y. Takaya, and T. Miyoshi, “New mass measurement method of aerosol particle using vibrating probe particle controlled by radiation pressure,” Proc. SPIE 5993, 59930P(2005).
[CrossRef]

Rev. Sci. Instrum. (2)

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994).
[CrossRef]

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Linear and radial polarization in the cross-sectional plane of the laser beam.

Fig. 2
Fig. 2

Simulation model of the ray-tracing method for evaluating axial trapping efficiency. The laser focus deviates by a distance d z from the center of the sphere along the optical axis. (a) Bird’s-eye view. (b) Cross-sectional view.

Fig. 3
Fig. 3

Simulation model of the ray-tracing method for evaluating transverse trapping efficiency. The laser focus deviates by a distance d y from the center of a sphere, and the Y-axis is perpendicular to the optical axis. (a) Bird’s-eye view. (b) Considered plane.

Fig. 4
Fig. 4

Simulated result for (a) axial trapping efficiency and (b) transverse trapping efficiency. The black and red lines represent the cases of linearly polarized laser beam with an OL of NA 0.95 and radially polarized laser beam with an OL of NA 0.95, respectively.

Fig. 5
Fig. 5

Optical system for the optical tweezers in air. The abbreviations are as follows: L, lens; AO, acoust-optic device; PH, pinhole; CF, converter filter; HM, half- mirror; OL, objective lens; P, piezoelectric oscillator; M, mirror; CL, collective lens; IF, interference filter; PD, photodetector; LD, laser diode; and FG, function generator.

Fig. 6
Fig. 6

Comparisons of the intensity profiles of the laser beam that is both linearly and radially polarized. CCD images of (a)  the linearly polarized beam and (b) the radially polarized beam after converter filter are shown. (c) Cross section of the intensity profiles.

Fig. 7
Fig. 7

CCD image of the laser spot using OL with NA 0.95. Experimentally obtained images (a) and (c) are compared to confirm with the theoretical calculations (b) and (d) from Ref. [27]. (a) and (c) indicate the linear and radial polarization, respectively, while (b) and (d) indicate the E y component and the E z component, respectively.

Fig. 8
Fig. 8

Optical tweezers of a glass microbead (diameter, 8 μm ) in air using a radially polarized laser beam with an OL with (a) NA 0.95 and (b) NA 0.80, whose working distances are 0.3 and 3.4 mm , respectively. The arrow indicates the trapped microbead that is visible due to a scattered light of white-light illumination.

Fig. 9
Fig. 9

Experimental data and fitting curves of frequency response for transverse and axial oscillation.

Fig. 10
Fig. 10

Experimentally and numerically investigated transverse stiffness values for radial and linear polarization.

Fig. 11
Fig. 11

Experimentally and numerically investigated axial stiffness values for radial and linear polarization.

Tables (2)

Tables Icon

Table 1 Experimental Results for Transverse and Axial Trapping Stiffness Values for Radial and Linear Polarization a

Tables Icon

Table 2 Comparison of the Ratio of Change in Trapping Stiffness to Irradiated Laser Power Obtained by Experimental and Analytical Data

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F s = n 1 P c { 1 + R cos 2 θ T 2 { cos 2 ( θ θ r ) + R cos 2 θ } 1 + R 2 + 2 R cos 2 θ r } ,
F g = n 1 P c { R sin 2 θ T 2 { sin 2 ( θ θ r ) + R sin 2 θ } 1 + R 2 + 2 R cos 2 θ r } ,
I ( r ) = I o exp ( 2 r 2 / r max 2 ) ,
I ( r ) = I o exp ( 2 ( r a ) 2 / ( r max / 2 ) 2 ) ,
F = Q n P c .
k = F / x ,
m d 2 x d t 2 + D d x d t + k ( x A sin 2 π f t ) = F ( t ) .
X = f n 2 ( f n 2 f 2 ) 2 + ( D 2 π m f ) 2 A .
f n = 1 2 k m .

Metrics