Abstract

Photonic-crystal fiber (PCF) is shown to substantially increase the guided-wave luminescent response from molecules excited through two-photon absorption (TPA) by femtosecond near-infrared laser pulses. With only a few nanoliters of TPA-excited molecules filling airholes in a specifically designed PCF, the guided-wave two-photon-excited luminescence (TPL) signal is enhanced by more than 2 orders of magnitude relative to the maximum TPL signal attainable from a cell with the same dye excited and collected by the same PCF. Biophotonic implications of this waveguide TPL-response enhancement include fiber-format solutions for online monitoring of drug delivery and drug activation, interrogation of neural activity, biosensing, endoscopy, and locally controlled singlet oxygen generation in photodynamic therapy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in biosciences,” Nature Biotechnol. 21, 1369-1377 (2003).
    [CrossRef]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods 2, 932-940 (2005).
    [CrossRef] [PubMed]
  4. J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).
  5. B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-initiated photodynamic therapy,” Photochem. Photobiol. 65, 166-176 (1997).
    [CrossRef] [PubMed]
  6. W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997).
    [CrossRef] [PubMed]
  7. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
    [CrossRef] [PubMed]
  8. J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker, Jr., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett. 27, 1412-1414 (2002).
    [CrossRef]
  9. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  10. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
    [CrossRef] [PubMed]
  11. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
    [CrossRef]
  12. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  13. S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13, 3454-3459 (2005).
    [CrossRef] [PubMed]
  14. A. M. Zheltikov, “Photonic-crystal fibers for a new generation of light sources and frequency converters,” Phys. Uspekhi 50, 705-727 (2007).
    [CrossRef]
  15. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28, 1224-1226(2003).
    [CrossRef] [PubMed]
  16. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607(1995).
    [CrossRef] [PubMed]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  18. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
    [CrossRef]
  19. A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Usp. 49, 605-628 (2006).
    [CrossRef]
  20. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
    [CrossRef] [PubMed]
  21. R. Y. Tsien, Breeding Molecules to Spy on Cells, The Harvey Lectures, Series 99 (Wiley, 2005), pp. 77-93.
  22. L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.
  23. L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

2007 (1)

A. M. Zheltikov, “Photonic-crystal fibers for a new generation of light sources and frequency converters,” Phys. Uspekhi 50, 705-727 (2007).
[CrossRef]

2006 (1)

A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Usp. 49, 605-628 (2006).
[CrossRef]

2005 (3)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13, 3454-3459 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (4)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in biosciences,” Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28, 1224-1226(2003).
[CrossRef] [PubMed]

2002 (2)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

J. Y. Ye, M. T. Myaing, T. B. Norris, T. Thomas, and J. Baker, Jr., “Biosensing based on two-photon fluorescence measurements through optical fibers,” Opt. Lett. 27, 1412-1414 (2002).
[CrossRef]

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

1997 (3)

J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-initiated photodynamic therapy,” Photochem. Photobiol. 65, 166-176 (1997).
[CrossRef] [PubMed]

W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997).
[CrossRef] [PubMed]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607(1995).
[CrossRef] [PubMed]

1994 (1)

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607(1995).
[CrossRef] [PubMed]

Anokhin, K. V.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

Baker, J.

Baker,, J. R.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

Bhawalkar, J. D.

J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Bjarklev, A.

Bouwmans, G.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

Carlsen, A.

Chalfie, M.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
[CrossRef] [PubMed]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Dees, C.

W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Doronina, L. V.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

Euskirchen, G.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
[CrossRef] [PubMed]

Fedotov, A. B.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Fedotov, I. V.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

Fisher, W. G.

W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997).
[CrossRef] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Folkenberg, J. R.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Hansen, T. P.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Hoiby, P. E.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Ivashkina, O. I.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Jensen, J. B.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607(1995).
[CrossRef] [PubMed]

Knight, J. C.

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28, 1224-1226(2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Konorov, S.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Kumar, N. D.

J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).

Lanin, A. A.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Mikhailova, Yu. M.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Miles, R. B.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

Myaing, M. T.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Norris, T. B.

Olivo, M.

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-initiated photodynamic therapy,” Photochem. Photobiol. 65, 166-176 (1997).
[CrossRef] [PubMed]

Partridge, W. P.

W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997).
[CrossRef] [PubMed]

Pedersen, L. H.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Prasad, P. N.

J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).

Prasher, D. C.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
[CrossRef] [PubMed]

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

Riishede, J.

Russell, P. St. J.

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28, 1224-1226(2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Scalora, M.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Scully, M. O.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Shneider, M. N.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Singh, G.

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-initiated photodynamic therapy,” Photochem. Photobiol. 65, 166-176 (1997).
[CrossRef] [PubMed]

Skryabin, D. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Sokolov, A. V.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Thomas, T.

Tsien, R. Y.

R. Y. Tsien, Breeding Molecules to Spy on Cells, The Harvey Lectures, Series 99 (Wiley, 2005), pp. 77-93.

Tu, Y.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
[CrossRef] [PubMed]

Wachter, E. A.

W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997).
[CrossRef] [PubMed]

Wadsworth, W. J.

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28, 1224-1226(2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Ward, W. W.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in biosciences,” Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in biosciences,” Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

Wilson, B. C.

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-initiated photodynamic therapy,” Photochem. Photobiol. 65, 166-176 (1997).
[CrossRef] [PubMed]

Y. Ye, J.

Ye, J. Y.

Yulin, A. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Zhao, C.-F.

J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Zheltikov, A.

Zheltikov, A. M.

A. M. Zheltikov, “Photonic-crystal fibers for a new generation of light sources and frequency converters,” Phys. Uspekhi 50, 705-727 (2007).
[CrossRef]

A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Usp. 49, 605-628 (2006).
[CrossRef]

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in biosciences,” Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

Zots, M. A.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

J. Clin. Lasers Med. Surg. (1)

J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao, and P. N. Prasad, “Two-photon photodynamic therapy,” J. Clin. Lasers Med. Surg. 15, 201-204 (1997).

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854-858(2001).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

Nature Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in biosciences,” Nature Biotechnol. 21, 1369-1377 (2003).
[CrossRef]

Nature Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods 2, 932-940 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Photochem. Photobiol. (2)

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to Photofrin-initiated photodynamic therapy,” Photochem. Photobiol. 65, 166-176 (1997).
[CrossRef] [PubMed]

W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66, 141-155 (1997).
[CrossRef] [PubMed]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602-2607(1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Phys. Usp. (1)

A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Usp. 49, 605-628 (2006).
[CrossRef]

Phys. Uspekhi (1)

A. M. Zheltikov, “Photonic-crystal fibers for a new generation of light sources and frequency converters,” Phys. Uspekhi 50, 705-727 (2007).
[CrossRef]

Science (3)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802-805 (1994).
[CrossRef] [PubMed]

Other (3)

R. Y. Tsien, Breeding Molecules to Spy on Cells, The Harvey Lectures, Series 99 (Wiley, 2005), pp. 77-93.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, A. B. Fedotov, and A. M. Zheltikov, “Enhancement of two-photon-excited luminescence response from brain-tissue-labeling dyes using a wavelength-tunable soliton output of a photonic-crystal fiber,” in Topical Problems of Biophotonics (Institute of Applied Physics, 2009), p. 210.

L. V. Doronina, I. V. Fedotov, O. I. Ivashkina, M. A. Zots. K. V. Anokhin, Yu. M. Mikhailova, A. A. Lanin, A. B. Fedotov, M. N. Shneider, R. B. Miles, A. V. Sokolov, M. O. Scully, and A. M. Zheltikov, “The second law of thermodynamics, Maxwell's demons, photonic-crystal fibers, and optimal waveguide solutions for biophotonics,” in Proceedings of the 18th International Laser Physics Workshop (Institute of Photonic Sciences, 2009), p. 177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning-electron microscope images of dual-cladding PCFs with (a) a ring outer cladding and (b) a microstructure outer cladding.

Fig. 2
Fig. 2

TPA excitation and TPL response collection with a dual-cladding fiber probe: (a) excitation light is delivered through the fiber core to an object adjacent to the fiber end, while the TPL signal is collected by a high-numerical-aperture inner part of the fiber cladding; (b) an evanescent field of the mode guided along the fiber core generates the TPL signal through a TPA excitation of dye molecules in a solution filling the airholes in the PCF cladding, with the inner part of the fiber cladding capturing the TPL response into a waveguide mode and delivering this signal to a detection system.

Fig. 3
Fig. 3

Diagram of the experimental setup: DM, dichroic mirror; DYE, cell with a dye solution; F, filter; PMT, photomultiplier.

Fig. 4
Fig. 4

Spectra of the optical response of Rhodamine 6G solution excited by femtosecond Ti:sapphire laser pulses with a central wavelength of 805 nm detected (a) from dye solution in a cell [as sketched in Fig. 2a] and (b) from dye solution filling the airholes in the PCF cladding (as shown in Fig. 3).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P 1 = 2 π 0 a σ 1 I 1 ( r ) r d r ,
I 1 ( r ) = μ β l I 0 2 [ f 1 ( r ) ] 2
σ 1 = 2 π 0 θ 1 sin ξ d ξ ,
sin θ 1 = n 1 n 0 [ 1 ( n 2 n 1 ) 2 ] 1 / 2 ,
σ 1 π θ 1 2 π ( NA 1 n 0 ) 2 ,
P 1 π μ β l I 0 2 S 1 2 θ 1 2 [ 1 exp ( 2 a 2 r 1 2 ) ] ,
P 1 π μ β l I 0 2 S 1 θ 1 2 .
P 2 = 2 π a R I 2 [ f 2 ( r ) ] 2 r d r ,
I 2 = μ β σ 2 0 L I 0 2 d x ( 1 + β I 0 x ) 2 ,
σ 2 π θ 2 2 π ( NA 2 n co ) 2 ;
I 2 = μ β σ 2 I 0 2 L 1 + β I 0 L .
P 2 π μ β θ 2 2 I 0 2 L S 2 2 exp ( 2 a 2 r 2 2 ) ,
η = P 2 P 1 θ 2 2 θ 1 2 S 2 S 1 L λ 2 π a 2 exp ( 2 a 2 r 2 2 ) .

Metrics