Abstract

Birefringent particles rotate when trapped in elliptically polarized light. When an infinity corrected oil-immersion objective is used for trapping, rotation of birefringent particles in optical tweezers based on an infinity optical microscope is affected by the spherical aberration at the glass–water interface. The maximum rotation rate of birefringent particles occurs close to the coverslip, and the rotation rate decreases dramatically as the trapped depth increases. We experimentally demonstrate that spherical aberration can be compensated by using a finite-distance-corrected objective to trap and rotate the birefringent particles. It is found that the trapped depth corresponding to the maximum rotation rate is 50μm, and the rotation rates at deep trapped depths are improved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
    [CrossRef] [PubMed]
  3. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
    [CrossRef]
  4. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
    [CrossRef]
  5. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
    [CrossRef]
  6. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831-1832 (1991).
    [CrossRef]
  7. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998).
    [CrossRef]
  8. A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743-745 (2002).
    [CrossRef]
  9. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
    [CrossRef] [PubMed]
  10. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998).
    [CrossRef]
  11. N. Ji, M. K. Liu, J. H. Zhou, Z. F. Lin, and S. T. Chui, “Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation,” Opt. Express 13, 5192-5204 (2005).
    [CrossRef] [PubMed]
  12. M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005).
    [CrossRef]
  13. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
    [CrossRef]
  14. A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
    [CrossRef] [PubMed]
  15. M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34, 139-141 (2009).
    [CrossRef] [PubMed]
  16. P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).
    [CrossRef]
  17. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett. 31, 766-768 (2006).
    [CrossRef] [PubMed]
  18. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
    [CrossRef]
  19. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
    [CrossRef]
  20. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45, 3425-3429 (2006).
    [CrossRef] [PubMed]
  21. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, and C. F. Schmidt, “Optical trap stiffness in the presence and absence of spherical aberrations,” Appl. Opt. 45, 1812-1819 (2006).
    [CrossRef] [PubMed]
  22. M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666-3668 (1997).
    [CrossRef]
  23. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325-332 (1995).
    [CrossRef]
  24. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
    [CrossRef] [PubMed]
  25. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: the effect of tube length,” Opt. Commun. 259, 204-211 (2006).
    [CrossRef]
  26. C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991).
    [CrossRef] [PubMed]
  27. M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48, 2720-2730 (2009).
    [CrossRef] [PubMed]
  28. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507 (2002).
    [CrossRef] [PubMed]
  29. K. D. Wulff, D. G. Cole, and R. L. Clark, “Controlled rotation of birefringent particles in an optical trap,” Appl. Opt. 47, 6428-6433 (2008).
    [CrossRef] [PubMed]
  30. S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80, 631-634 (2005).
    [CrossRef]
  31. H. Brenner, “Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length,” Appl. Sci. Res. Sect. A 13, 81-120 (1964).
    [CrossRef]

2009 (2)

2008 (1)

2007 (1)

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[CrossRef]

2006 (4)

2005 (3)

N. Ji, M. K. Liu, J. H. Zhou, Z. F. Lin, and S. T. Chui, “Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation,” Opt. Express 13, 5192-5204 (2005).
[CrossRef] [PubMed]

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80, 631-634 (2005).
[CrossRef]

M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005).
[CrossRef]

2004 (4)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

2002 (2)

2001 (3)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

1999 (1)

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

1998 (3)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998).
[CrossRef]

P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998).
[CrossRef]

1997 (1)

M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666-3668 (1997).
[CrossRef]

1995 (1)

1994 (1)

1991 (2)

C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991).
[CrossRef] [PubMed]

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

1986 (1)

1964 (1)

H. Brenner, “Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length,” Appl. Sci. Res. Sect. A 13, 81-120 (1964).
[CrossRef]

Arlt, J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

Ashkin, A.

Augier-Calderin, A.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Booker, G. R.

Brain, K.

Brenner, H.

H. Brenner, “Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length,” Appl. Sci. Res. Sect. A 13, 81-120 (1964).
[CrossRef]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

Charsooghi, M. A.

Chu, S.

Chui, S. T.

M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005).
[CrossRef]

N. Ji, M. K. Liu, J. H. Zhou, Z. F. Lin, and S. T. Chui, “Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation,” Opt. Express 13, 5192-5204 (2005).
[CrossRef] [PubMed]

Clark, R. L.

Cole, D. G.

Cooper, J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

Dziedzic, J. M.

Fery-Forgues, S.

Friese, M. E. J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998).
[CrossRef]

Funk, M.

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Galaup, J.-P.

Gan, X. S.

M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666-3668 (1997).
[CrossRef]

Gardel, E.

Gold, J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
[CrossRef]

Golestanian, R.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: the effect of tube length,” Opt. Commun. 259, 204-211 (2006).
[CrossRef]

S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett. 31, 766-768 (2006).
[CrossRef] [PubMed]

Grier, D. G.

Gu, M.

P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666-3668 (1997).
[CrossRef]

C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
[CrossRef] [PubMed]

C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991).
[CrossRef] [PubMed]

Gupta, P. K.

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80, 631-634 (2005).
[CrossRef]

Hagberg, P.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
[CrossRef]

Hanstorp, D.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
[CrossRef]

Heckenberg, N. R.

M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34, 139-141 (2009).
[CrossRef] [PubMed]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998).
[CrossRef]

Higurashi, E.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Hossack, W. J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Inaba, H.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Ito, T.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Ji, N.

M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005).
[CrossRef]

N. Ji, M. K. Liu, J. H. Zhou, Z. F. Lin, and S. T. Chui, “Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation,” Opt. Express 13, 5192-5204 (2005).
[CrossRef] [PubMed]

Jordan, P.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

Ke, P. C.

P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666-3668 (1997).
[CrossRef]

Khalesifard, H. R.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: the effect of tube length,” Opt. Commun. 259, 204-211 (2006).
[CrossRef]

S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett. 31, 766-768 (2006).
[CrossRef] [PubMed]

Knöner, G.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[CrossRef]

La Porta, A.

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Laczik, Z.

Lamère, J.-F.

Leach, J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

Lin, Z. F.

M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005).
[CrossRef]

N. Ji, M. K. Liu, J. H. Zhou, Z. F. Lin, and S. T. Chui, “Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation,” Opt. Express 13, 5192-5204 (2005).
[CrossRef] [PubMed]

Liu, M. K.

N. Ji, M. K. Liu, J. H. Zhou, Z. F. Lin, and S. T. Chui, “Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation,” Opt. Express 13, 5192-5204 (2005).
[CrossRef] [PubMed]

M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005).
[CrossRef]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

Mohanty, S. K.

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80, 631-634 (2005).
[CrossRef]

Nieminen, T. A.

M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34, 139-141 (2009).
[CrossRef] [PubMed]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998).
[CrossRef]

O'Neil, A. T.

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Padgett, M. J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743-745 (2002).
[CrossRef]

Parkin, S. J.

M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34, 139-141 (2009).
[CrossRef] [PubMed]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[CrossRef]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

Rao, K. D.

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80, 631-634 (2005).
[CrossRef]

Reihani, S. N. S.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: the effect of tube length,” Opt. Commun. 259, 204-211 (2006).
[CrossRef]

S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, “Efficient in-depth trapping with an oil-immersion objective lens,” Opt. Lett. 31, 766-768 (2006).
[CrossRef] [PubMed]

Rodriguez-Otazo, M.

Rohrbach, A.

Roichman, Y.

Rubinsztein-Dunlop, H.

M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34, 139-141 (2009).
[CrossRef] [PubMed]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998).
[CrossRef]

Sato, S.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Sawada, R.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Schmidt, C. F.

Sheppard, C. J. R.

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

Sinclair, G.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

Stelzer, E. H. K.

Stienen, G. J. M.

Stilgoe, A. B.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Török, P.

Varga, P.

Vermeulen, K. C.

Waldron, A.

Wang, M. D.

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Wilson, L.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Wuite, G. J. L.

Wulff, K. D.

Zhou, H.

Zhou, J. H.

Appl. Opt. (7)

Appl. Phys. B (1)

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80, 631-634 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547-549 (2001).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Appl. Sci. Res. Sect. A (1)

H. Brenner, “Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length,” Appl. Sci. Res. Sect. A 13, 81-120 (1964).
[CrossRef]

Electron. Lett. (1)

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

J. Mod. Opt. (2)

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350(1998).
[CrossRef]

Opt. Commun. (2)

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: the effect of tube length,” Opt. Commun. 259, 204-211 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. E (3)

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Picoliter viscometry using optically rotated particles,” Phys. Rev. E 76, 041507 (2007).
[CrossRef]

M. K. Liu, N. Ji, Z. F. Lin, and S. T. Chui, “Radiation torque on a birefringent sphere caused by an electromagnetic wave,” Phys. Rev. E 72, 056610 (2005).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68, 3666-3668 (1997).
[CrossRef]

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292,912-914 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

(a) Rotation signal for the birefringent particle under a laser power of 35 mW measured at the laser output and (b) its Fourier transform.

Fig. 3
Fig. 3

Rotation rates as a function of trapped depth for a 1.1 μm diameter particle trapped by two microscope objectives. The symbols correspond to the rotation rate at each trapped depth; the error bars were obtained from statistical errors on a single measurement. Open circles, measurements of the infinity corrected objective; filled squares, data for the finite-distance- corrected objective.

Tables (1)

Tables Icon

Table 1 Correction Factors β at Different Trapped Depths

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ψ A ( θ 1 , θ 2 , d ) = k 0 d ( n 1 cos θ 1 n 2 cos θ 2 ) ,
ψ B = 1 2 k 0 s 2 Δ ( 1 l ) tan 2 θ 1 = 1 2 k 0 s 2 l 2 Δ l tan 2 θ 1 .
ψ e = ψ A + ψ B .
( T z ) = 8 π η Ω a 3 .
T z = β ( T z ) = ( T z ) [ 1 + sinh 3 α n = 2 1 sinh 3 ( n α ) ] ,
β 1 = 1 1 8 ( a h ) 3 3 256 ( a h ) 8 + O [ ( a h ) 10 ] .

Metrics