Abstract

Laser-induced fluorescence is used to investigate fluorescence properties of unwashed Bacillus thuringiensis and Bacillus subtilis spores, ovalbumin, and washed bacteriophage MS2. A fluorescence detector is calibrated to obtain absolute fluorescence cross sections. Fluorescence maps of biological aerosols and suspensions are measured at a wide excitation range from 210 to 419nm and a wide detection range from 315 to 650nm. The dominant features of the measured spectra are the amino acid peaks, having excitation maxima at 220 and 280nm. The peaks are similar for the bacterial spores, both for aerosols and suspensions, whereas the peaks are shifted toward the shorter emission wavelengths for the suspended ovalbumin and MS2. Moreover, the fluorescence emission, excited above 320nm is more intensive for the aerosols than the suspensions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
    [CrossRef] [PubMed]
  2. P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
    [PubMed]
  3. B. Lighthart and B. T. Shaffer, “Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral,” Aerobiologia 11, 19-25 (1995).
    [CrossRef]
  4. M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000).
    [CrossRef]
  5. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879-1896(1968).
    [CrossRef] [PubMed]
  6. A. C. Samuels, J. F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  7. S. E. Thompson, N. S. Foster, T. J. Johnson, N. B. Valentine, and J. E. Amonette, “Identification of bacterial spores using statistical analysis of Fourier transform infrared photoacoustic spectroscopy data,” Appl. Spectrosc. 57, 893-899 (2003).
    [CrossRef] [PubMed]
  8. A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
    [CrossRef] [PubMed]
  9. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994).
    [CrossRef] [PubMed]
  10. M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
    [CrossRef] [PubMed]
  11. M. S. Ammor, “Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization,” J. Fluoresc. 17, 455-459 (2007).
    [CrossRef] [PubMed]
  12. W. Hinds, Aerosol Technology (Wiley, 1982).
  13. T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed., P. A. Baron and K. Willeke, eds. (Wiley, 2001), Chap. 24, pp. 387-418.
  14. A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461-3466 (2003).
    [CrossRef] [PubMed]
  15. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266 nm laser excitation,” Opt. Lett. 21, 1307-1309 (1996).
    [CrossRef] [PubMed]
  16. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
    [CrossRef]
  17. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for Bacillus spores,” Appl. Opt. 36, 958-967 (1997).
    [CrossRef] [PubMed]
  18. R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
    [CrossRef]
  19. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12, 4457-4466 (2004).
    [CrossRef] [PubMed]
  20. M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”
  21. V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003).
    [CrossRef]
  22. A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt. 42, 4080-4087 (2003).
    [CrossRef] [PubMed]
  23. J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet Bacillus spores,” Appl. Opt. 43, 5404-5409 (2004).
    [CrossRef] [PubMed]
  24. B. V. Bronk and L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436-440 (1993).
    [CrossRef]
  25. Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
    [CrossRef]
  26. J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998).
    [CrossRef]
  27. S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998).
    [PubMed]
  28. V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004).
    [CrossRef]
  29. R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002).
    [CrossRef]
  30. S. Duncan and J. Ho, “Estimation of viable spores in Bacillus atrophaeus (BG) particles of 1 to 9 μm size range,” Clean: Soil, Air, Water 36, 584-592 (2008).
    [CrossRef]
  31. F. J. Castellino and R. Barker, “Examination of the dissociation of multichain proteins in guanidine hydrochloride by membrane osmometry,” Biochemistry 7, 2207-2217 (1968).
    [CrossRef] [PubMed]
  32. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, and S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86-90 (1986).
    [CrossRef]
  33. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express 13, 8969-8979 (2005).
    [CrossRef] [PubMed]
  34. P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
    [CrossRef]
  35. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 529-567.
    [CrossRef]
  36. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
    [CrossRef] [PubMed]
  37. Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
    [CrossRef] [PubMed]

2008 (2)

2007 (3)

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
[CrossRef] [PubMed]

M. S. Ammor, “Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization,” J. Fluoresc. 17, 455-459 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (4)

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12, 4457-4466 (2004).
[CrossRef] [PubMed]

J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet Bacillus spores,” Appl. Opt. 43, 5404-5409 (2004).
[CrossRef] [PubMed]

V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004).
[CrossRef]

2003 (5)

2002 (3)

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
[CrossRef] [PubMed]

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002).
[CrossRef]

2000 (2)

M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

1999 (2)

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

1998 (2)

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998).
[CrossRef]

S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998).
[PubMed]

1997 (1)

1996 (1)

1995 (1)

B. Lighthart and B. T. Shaffer, “Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral,” Aerobiologia 11, 19-25 (1995).
[CrossRef]

1994 (2)

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994).
[CrossRef] [PubMed]

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

1993 (1)

1986 (1)

1968 (2)

P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879-1896(1968).
[CrossRef] [PubMed]

F. J. Castellino and R. Barker, “Examination of the dissociation of multichain proteins in guanidine hydrochloride by membrane osmometry,” Biochemistry 7, 2207-2217 (1968).
[CrossRef] [PubMed]

Agranovski, V.

V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003).
[CrossRef]

Alfano, R. R.

Alimova, A.

Ammor, M. S.

M. S. Ammor, “Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization,” J. Fluoresc. 17, 455-459 (2007).
[CrossRef] [PubMed]

M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
[CrossRef] [PubMed]

Amonette, J. E.

Ashford, D.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Ayoko, G. A.

V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004).
[CrossRef]

Barker, R.

F. J. Castellino and R. Barker, “Examination of the dissociation of multichain proteins in guanidine hydrochloride by membrane osmometry,” Biochemistry 7, 2207-2217 (1968).
[CrossRef] [PubMed]

Barr, E. B.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Blackall, P. J.

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003).
[CrossRef]

Bottiger, J.

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998).
[CrossRef]

Bottiger, J. R.

Boulet, C. A.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Boutou, V.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

Britt, D.

Bronk, B. V.

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for Bacillus spores,” Appl. Opt. 36, 958-967 (1997).
[CrossRef] [PubMed]

B. V. Bronk and L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436-440 (1993).
[CrossRef]

Castellino, F. J.

F. J. Castellino and R. Barker, “Examination of the dissociation of multichain proteins in guanidine hydrochloride by membrane osmometry,” Biochemistry 7, 2207-2217 (1968).
[CrossRef] [PubMed]

Chacko, E.

Chang, R. K.

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266 nm laser excitation,” Opt. Lett. 21, 1307-1309 (1996).
[CrossRef] [PubMed]

Chen, B. T.

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Chen, G.

Cheng, Y. S.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Copeland, R. A.

Corapcioglu, M. Y.

S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998).
[PubMed]

Dalterio, R. A.

Davis, E. J.

M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000).
[CrossRef]

Delgado, S.

M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
[CrossRef] [PubMed]

Deluca, P.

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998).
[CrossRef]

DeLucia, J. F. C.

Dowd, S. E.

S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998).
[PubMed]

Dull, P. M.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Duncan, S.

S. Duncan and J. Ho, “Estimation of viable spores in Bacillus atrophaeus (BG) particles of 1 to 9 μm size range,” Clean: Soil, Air, Water 36, 584-592 (2008).
[CrossRef]

Eversole, J. D.

Fan, B. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Faris, G. W.

Feather, G.

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Foster, N. S.

Garvey, D. M.

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Grinshpun, S.

T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed., P. A. Baron and K. Willeke, eds. (Wiley, 2001), Chap. 24, pp. 387-418.

Guillemin, J.

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Hargis, J. P. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Hargis, P. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Hargreaves, M.

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003).
[CrossRef]

Hernberg, R.

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Hill, S. C.

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266 nm laser excitation,” Opt. Lett. 21, 1307-1309 (1996).
[CrossRef] [PubMed]

Hinds, W.

W. Hinds, Aerosol Technology (Wiley, 1982).

Ho, J.

S. Duncan and J. Ho, “Estimation of viable spores in Bacillus atrophaeus (BG) particles of 1 to 9 μm size range,” Clean: Soil, Air, Water 36, 584-592 (2008).
[CrossRef]

Ho, J. Y. W.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Holler, S.

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Hugh-Jones, M.

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Huston, A. L.

Johnson, T. J.

Jonsson, P.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Katz, A.

Keskinen, J.

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Klemm, W.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002).
[CrossRef]

Kournikakis, B.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Kullander, F.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Kunnil, J.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 529-567.
[CrossRef]

Langmuir, A.

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Laucks, M. L.

M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000).
[CrossRef]

Laurila, T.

Legenhausen, K.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002).
[CrossRef]

Leighton, T. J.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461-3466 (2003).
[CrossRef] [PubMed]

Lighthart, B.

B. Lighthart and B. T. Shaffer, “Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral,” Aerobiologia 11, 19-25 (1995).
[CrossRef]

Lindgren, M.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Manninen, A.

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Margolles, A.

M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
[CrossRef] [PubMed]

Marjamäki, M.

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Martín, P. Álvarez

M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
[CrossRef] [PubMed]

Mayo, B.

M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
[CrossRef] [PubMed]

McCormick, S. A.

McKenzie, M. M.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

McNesby, K. L.

Meselson, M.

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Minko, G.

Miziolek, A. W.

Morawska, L.

V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003).
[CrossRef]

Mortelmans, K.

Nachman, P.

Nelson, W. H.

Nevalainen, A.

T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed., P. A. Baron and K. Willeke, eds. (Wiley, 2001), Chap. 24, pp. 387-418.

Niles, S.

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Nordstrand, M.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Ogston, J.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

O'Hern, T. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Orr, C.-S.

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Ossoff, R. H.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994).
[CrossRef] [PubMed]

Pan, Y.-L.

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

Pawellek, C.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002).
[CrossRef]

Phelan, M. A.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Pillai, S. D.

S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998).
[PubMed]

Pinnick, R. G.

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266 nm laser excitation,” Opt. Lett. 21, 1307-1309 (1996).
[CrossRef] [PubMed]

Popova, I.

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Popovic, T.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Preppernau, B. L.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Price, P. B.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461-3466 (2003).
[CrossRef] [PubMed]

Psaras, D.

Putkiranta, M.

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Rader, D. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Radloff, R. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

Reinisch, L.

Reponen, T.

T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed., P. A. Baron and K. Willeke, eds. (Wiley, 2001), Chap. 24, pp. 387-418.

Ristovski, Z.

V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003).
[CrossRef]

Roll, G.

M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000).
[CrossRef]

Rosen, J. M.

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

Rosen, R. B.

Rostedt, A.

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Saarela, J.

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Samuels, A. C.

Sarasanandarajah, S.

Savage, H. E.

Schweigers, G.

M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000).
[CrossRef]

Scotto, C.

Shaffer, B. T.

B. Lighthart and B. T. Shaffer, “Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral,” Aerobiologia 11, 19-25 (1995).
[CrossRef]

Shah, M.

Shelokov, A.

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Sivaprakasam, V.

Sorrell, M. J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994).
[CrossRef] [PubMed]

Sorvajärvi, T.

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

Spence, M. R.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Sperry, J.

Stuebing, E.

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998).
[CrossRef]

Suib, S. L.

Swartz, B.

Tanguay, J. F.

Tärnhage, T.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Thompson, S. E.

Tisone, G. C.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Torczynski, J. R.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Tribble, J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994).
[CrossRef] [PubMed]

Valentine, N. B.

Vanreenen, D.

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998).
[CrossRef]

Wang, S.

S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998).
[PubMed]

Wästerby, P.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Weichert, R.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002).
[CrossRef]

Werkhaven, J. A.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994).
[CrossRef] [PubMed]

Westphal, A. J.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461-3466 (2003).
[CrossRef] [PubMed]

Wheeler, K. E.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461-3466 (2003).
[CrossRef] [PubMed]

Whitney, E. A. S.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Will, D. V.

Willeke, K.

T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed., P. A. Baron and K. Willeke, eds. (Wiley, 2001), Chap. 24, pp. 387-418.

Wilson, K. E.

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Wolf, J.-P.

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

Wyatt, P. J.

Yampolskaya, O.

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Young, S. A.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Yu, J.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

Aerobiologia (1)

B. Lighthart and B. T. Shaffer, “Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral,” Aerobiologia 11, 19-25 (1995).
[CrossRef]

Aerosol Sci. Technol. (2)

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength uv fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

V. Agranovski, Z. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol. 38, 354-364 (2004).
[CrossRef]

Appl. Environ. Microbiol. (1)

S. E. Dowd, S. D. Pillai, S. Wang, and M. Y. Corapcioglu, “Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils,” Appl. Environ. Microbiol. 64, 405-410 (1998).
[PubMed]

Appl. Opt. (7)

G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for Bacillus spores,” Appl. Opt. 36, 958-967 (1997).
[CrossRef] [PubMed]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt. 41, 2994-2999 (2002).
[CrossRef] [PubMed]

A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt. 42, 4080-4087 (2003).
[CrossRef] [PubMed]

A. C. Samuels, J. F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879-1896(1968).
[CrossRef] [PubMed]

J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet Bacillus spores,” Appl. Opt. 43, 5404-5409 (2004).
[CrossRef] [PubMed]

A. Manninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross sections from airborne microsized particles,” Appl. Opt. 47, 110-115 (2008).
[CrossRef] [PubMed]

Appl. Spectrosc. (3)

Biochemistry (1)

F. J. Castellino and R. Barker, “Examination of the dissociation of multichain proteins in guanidine hydrochloride by membrane osmometry,” Biochemistry 7, 2207-2217 (1968).
[CrossRef] [PubMed]

Clean: Soil, Air, Water (1)

S. Duncan and J. Ho, “Estimation of viable spores in Bacillus atrophaeus (BG) particles of 1 to 9 μm size range,” Clean: Soil, Air, Water 36, 584-592 (2008).
[CrossRef]

Emerg. Infect. Dis. (1)

P. M. Dull, K. E. Wilson, B. Kournikakis, E. A. S. Whitney, C. A. Boulet, J. Y. W. Ho, J. Ogston, M. R. Spence, M. M. McKenzie, M. A. Phelan, T. Popovic, and D. Ashford, “Bacillus anthracis aerosolization associated with a contaminated mail sorting machine,” Emerg. Infect. Dis. 8, 1044-1047(2002).
[PubMed]

Field Anal. Chem. Technol. (1)

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221-239 (1999).
[CrossRef]

J. Aerosol Sci. (3)

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, S965-S966 (1998).
[CrossRef]

M. L. Laucks, G. Roll, G. Schweigers, and E. J. Davis, “Physical and chemical (Raman) characterization of bioaerosols-pollen,” J. Aerosol Sci. 31, 307-319 (2000).
[CrossRef]

V. Agranovski, Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska, “Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress,” J. Aerosol Sci. 34, 1711-1727 (2003).
[CrossRef]

J. Fluoresc. (1)

M. S. Ammor, “Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization,” J. Fluoresc. 17, 455-459 (2007).
[CrossRef] [PubMed]

J. Geophys. Res. (1)

Y.-L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, Connecticut, and Las Cruces, New Mexico,” J. Geophys. Res. 112, D24S19 (2007).
[CrossRef]

J. Microbiol. Methods (1)

M. S. Ammor, S. Delgado, P. Álvarez Martín, A. Margolles, and B. Mayo, “Reagentless identification of human bifidobacteria by intrinsic fluorescence,” J. Microbiol. Methods 69, 100-106(2007).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155-163(1994).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Part. Part. Syst. Charact. (1)

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact. 19, 216-222 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multiphoton-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54-57 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461-3466 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. Jonsson, F. Kullander, M. Nordstrand, T. Tärnhage, P. Wästerby, and M. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Science (1)

M. Meselson, J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya, “The Sverdlovsk anthrax outbreak of 1979,” Science 266, 1202-1208 (1994).
[CrossRef] [PubMed]

Other (4)

W. Hinds, Aerosol Technology (Wiley, 1982).

T. Reponen, K. Willeke, S. Grinshpun, and A. Nevalainen, “Biological particle sampling,” in Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed., P. A. Baron and K. Willeke, eds. (Wiley, 2001), Chap. 24, pp. 387-418.

M. Putkiranta, Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland, A. Manninen, A. Rostedt, J. Saarela, T. Sorvajärvi, M. Marjamäki, R. Hernberg, and J. Keskinen are preparing a manuscript to be called “Fluorescence properties of biochemicals in aerosol particles and in solutions.”

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 529-567.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical setup. Dashed line: fluorescence light. Modifications between the measurements of aerosols and suspensions are indicated with gray color.

Fig. 2
Fig. 2

BT spore: spectral fluorescence cross-section maps and total fluorescence cross-section spectra measured from (a, b) aerosol and (c, d) suspension. Multipliers of color bar are 7.3 · 10 14 cm 2 nm 1 and 1.7 · 10 13 cm 2 nm 1 for aerosol and suspension, respectively. Dashed line: regions artificially marked as zero due to the rejection bands of the filters or the second-order diffraction of fluorescence light.

Fig. 3
Fig. 3

BG spore: spectral fluorescence cross-section maps and total fluorescence cross-section spectra measured from (a, b) aerosol and (c, d) suspension. Multipliers of color bar are 7.7 · 10 13 cm 2 nm 1 and 6.3 · 10 13 cm 2 nm 1 for aerosol and suspension, respectively. Dashed line: regions artificially marked as zero due to the rejection bands of the filters or the second-order diffraction of fluorescence light. Raman peaks of water indicated with white arrows.

Fig. 4
Fig. 4

Bacteriophage MS2: spectral fluorescence cross-section maps and total fluorescence cross-section spectra measured from (a, b) aerosol and (c, d) suspension. Multipliers of color bar are 5.0 · 10 12 cm 2 nm 1 and 1 for aerosol and suspension, respectively. Dashed line: regions artificially marked as zero due to the rejection bands of the filters or the second-order diffraction of fluorescence light.

Fig. 5
Fig. 5

Two different emission spectra of individual MS2 particles excited at 260 nm .

Fig. 6
Fig. 6

OA molecule: spectral fluorescence cross-section maps and total fluorescence cross-section spectra measured from (a, b) aerosol and (c, d) suspension. Multipliers of color bar are 2.3 · 10 19 cm 2 nm 1 and 1.8 · 10 18 cm 2 nm 1 for aerosol and suspension, respectively. Dashed line: regions artificially marked as zero due to the rejection bands of the filters or the second-order diffraction of fluorescence light.

Fig. 7
Fig. 7

Normalized spectral fluorescence emission of aerosol samples. Excitation at 280 nm .

Fig. 8
Fig. 8

Normalized spectral fluorescence emission of suspended samples. Excitation at 280 nm .

Tables (1)

Tables Icon

Table 1 Measured Fluorescence Cross Sections for Aerosolized and Suspended Samples

Metrics