S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional optical distortion correction for quantitative anterior segment OCT,” Invest. Ophthalmol. Vis. Sci. 50, 5796(2009), abstract.

J. S. Witkowski and A. Grobelny, “Ray tracing method in a 3D analysis of fiber-optic elements,” Opt. Appl. 38, 281-294(2008).

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207-225 (2008).

[CrossRef]
[PubMed]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91, 251-264 (2008).

[CrossRef]
[PubMed]

M. Izdebski, “Ray and wave tracing in uniaxial crystals perturbed by an external field,” Appl. Opt. 47, 2729-2738 (2008).

[CrossRef]
[PubMed]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15, 2204-2218 (2007).

[CrossRef]
[PubMed]

J. Turuwhenua, “Corneal surface reconstruction algorithm using Zernike polynomial representation: improvements,” J. Opt. Soc. Am. A 24, 1551-1561 (2007).

[CrossRef]

L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A 24, 2783-2796 (2007).

[CrossRef]

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371-381 (2006).

[CrossRef]
[PubMed]

J. Kohout, J. I. Kolingerová, and J. Žára, “Parallel Delaunay triangulation in *E*^{2} and *E*^{3} for computers with shared memory,” Parallel Comput. 31, 491-522 (2005).

[CrossRef]

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).

[CrossRef]
[PubMed]

I. Babuska, U. Banerjee, and J. E. Osborn, “Generalized finite element methods: main ideas, results, and perspective,” Int. J. Computat. Methods 1, 67-103 (2004).

[CrossRef]

V. A. D. P. Sicam, J. Coppens, T. J. T. P. van den Berg, and R. G. L. van der Heijde, “Corneal surface reconstruction algorithm that uses Zernike polynomial representation,” J. Opt. Soc. Am. A 21, 1300-1306 (2004).

[CrossRef]

N. Calvo, S. R. Idelsohn, and E. Onate, “The extended Delaunay tessellation,” Eng. Computat. 20, 583-600 (2003).

[CrossRef]

L. A. Carvalho, “Computer algorithm for simulation of the human optical system and contribution of the cornea to the optical imperfections of the eye,” Revista de Física Aplicada e Instrumentação 16, 7-17 (2003).

J. C. He, J. Gwiazda, F. Thorn, and R. Held, “Wave-front aberrations in the anterior corneal surface and the whole eye,” J. Opt. Soc. Am. A 20, 1155-1163 (2003).

[CrossRef]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594-1600 (2002).

[CrossRef]
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the calculation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263-270 (2002).

[PubMed]

W. A. Douthwaite, “Application of linear regression to videokeratoscope data for tilted surfaces,” Ophthal. Physiol. Opt. 22, 46-54 (2002).

[CrossRef]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397-404 (2002).

[PubMed]

R. A. Egorchenkov and Y. A. Kravtsov, “Complex ray-tracing algorithms with application to optical problems,” J. Opt. Soc. Am. A 18, 650-656 (2001).

[CrossRef]

R. Vanselow, “About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation,” Appl. Math. 46, 13-28 (2001).

[CrossRef]

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48, 87-95 (2001).

[CrossRef]
[PubMed]

A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955-965 (2000).

[CrossRef]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697-1702 (2000).

[CrossRef]

M. K. Smolek and S. D. Klyce, “Is keratoconus a true ectasia? An evaluation of corneal surface area,” Arch. Ophthalmol. 118, 1179-1186 (2000).

[PubMed]

J. Allison, “Multiquadric radial basis functions for representing multidimensional high energy physics data,” Comput. Phys. Commun. 77, 377-395 (1993).

[CrossRef]

L. Guibas, D. Knuth, and M. Sharir, “Randomized incremental construction of Delaunay and Voronoi diagrams,” Algorithmica 7, 381-413 (1992).

[CrossRef]

B. Delaunay, “Sur la sphère vide,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793-800 (1934).

J. Allison, “Multiquadric radial basis functions for representing multidimensional high energy physics data,” Comput. Phys. Commun. 77, 377-395 (1993).

[CrossRef]

L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, “Random rough surface simulations,” in *Scattering of Electromagnetic Waves: Numerical Simulations*, L. Tsang, J. A. Kong, K. -H. Ding, and C. O. Ao, eds. (Wiley, 2001), pp. 124-132.

R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.

H. C. Howland, J. Buettner, and R. A. Applegate, “Computation of the shapes of normal corneas and their monochromatic aberrations from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 54-57.

A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955-965 (2000).

[CrossRef]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697-1702 (2000).

[CrossRef]

P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713-1715 (1998).

[CrossRef]

I. Babuska, U. Banerjee, and J. E. Osborn, “Generalized finite element methods: main ideas, results, and perspective,” Int. J. Computat. Methods 1, 67-103 (2004).

[CrossRef]

I. Babuska, U. Banerjee, and J. E. Osborn, “Generalized finite element methods: main ideas, results, and perspective,” Int. J. Computat. Methods 1, 67-103 (2004).

[CrossRef]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the calculation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263-270 (2002).

[PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594-1600 (2002).

[CrossRef]
[PubMed]

P. Beckmann, “Scattering of light by rough surfaces,” in *Progress in Optics*, E. Wolf, ed. (North-Holland, 1967), pp. 55-69.

F. L. Bookstein, “Principal warps: thin plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567-585 (1989).

[CrossRef]

P. L. George and H. Borouchaki, *Delaunay Triangulation and Meshing* (Editions Hermes, 1998).

R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.

H. C. Howland, J. Buettner, and R. A. Applegate, “Computation of the shapes of normal corneas and their monochromatic aberrations from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 54-57.

N. Calvo, S. R. Idelsohn, and E. Onate, “The extended Delaunay tessellation,” Eng. Computat. 20, 583-600 (2003).

[CrossRef]

L. A. Carvalho, “Computer algorithm for simulation of the human optical system and contribution of the cornea to the optical imperfections of the eye,” Revista de Física Aplicada e Instrumentação 16, 7-17 (2003).

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).

[CrossRef]
[PubMed]

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207-225 (2008).

[CrossRef]
[PubMed]

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48, 87-95 (2001).

[CrossRef]
[PubMed]

R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.

H. S. M. Coxeter, “Barycentric Coordinates,” in *Introduction to Geometry*, H. S. M. Coxeter, ed. (Wiley, 1969), pp. 216-221.

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48, 87-95 (2001).

[CrossRef]
[PubMed]

B. Delaunay, “Sur la sphère vide,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793-800 (1934).

L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, “Random rough surface simulations,” in *Scattering of Electromagnetic Waves: Numerical Simulations*, L. Tsang, J. A. Kong, K. -H. Ding, and C. O. Ao, eds. (Wiley, 2001), pp. 124-132.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).

[CrossRef]
[PubMed]

W. A. Douthwaite, “Application of linear regression to videokeratoscope data for tilted surfaces,” Ophthal. Physiol. Opt. 22, 46-54 (2002).

[CrossRef]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91, 251-264 (2008).

[CrossRef]
[PubMed]

G. Strang and G. Fix, *An Analysis of the Finite Element Method* (Prentice-Hall, 1973).

P. L. George and H. Borouchaki, *Delaunay Triangulation and Meshing* (Editions Hermes, 1998).

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371-381 (2006).

[CrossRef]
[PubMed]

C. Touma and C. Gotsman, “Triangle mesh compression,” in *Proceedings of Graphics Interface '98* 26-34 (Canadian Information Processing Society, 1998).

J. S. Witkowski and A. Grobelny, “Ray tracing method in a 3D analysis of fiber-optic elements,” Opt. Appl. 38, 281-294(2008).

L. Guibas, D. Knuth, and M. Sharir, “Randomized incremental construction of Delaunay and Voronoi diagrams,” Algorithmica 7, 381-413 (1992).

[CrossRef]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697-1702 (2000).

[CrossRef]

A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955-965 (2000).

[CrossRef]

P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713-1715 (1998).

[CrossRef]

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371-381 (2006).

[CrossRef]
[PubMed]

R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.

H. C. Howland, J. Buettner, and R. A. Applegate, “Computation of the shapes of normal corneas and their monochromatic aberrations from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 54-57.

N. Calvo, S. R. Idelsohn, and E. Onate, “The extended Delaunay tessellation,” Eng. Computat. 20, 583-600 (2003).

[CrossRef]

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48, 87-95 (2001).

[CrossRef]
[PubMed]

D. S. Kang, Y. J. Kim, and B. S. Shin, “Efficient large-scale terrain rendering method for real-world game simulation,” in *Technologies for E-Learning and Digital Entertainment: First International Conference, Edutainment 2006* (Springer, 2006), pp. 597-605.

[CrossRef]
[PubMed]

D. S. Kang, Y. J. Kim, and B. S. Shin, “Efficient large-scale terrain rendering method for real-world game simulation,” in *Technologies for E-Learning and Digital Entertainment: First International Conference, Edutainment 2006* (Springer, 2006), pp. 597-605.

[CrossRef]
[PubMed]

M. K. Smolek and S. D. Klyce, “Is keratoconus a true ectasia? An evaluation of corneal surface area,” Arch. Ophthalmol. 118, 1179-1186 (2000).

[PubMed]

L. Guibas, D. Knuth, and M. Sharir, “Randomized incremental construction of Delaunay and Voronoi diagrams,” Algorithmica 7, 381-413 (1992).

[CrossRef]

J. Kohout, J. I. Kolingerová, and J. Žára, “Parallel Delaunay triangulation in *E*^{2} and *E*^{3} for computers with shared memory,” Parallel Comput. 31, 491-522 (2005).

[CrossRef]

J. Kohout, J. I. Kolingerová, and J. Žára, “Parallel Delaunay triangulation in *E*^{2} and *E*^{3} for computers with shared memory,” Parallel Comput. 31, 491-522 (2005).

[CrossRef]

L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, “Random rough surface simulations,” in *Scattering of Electromagnetic Waves: Numerical Simulations*, L. Tsang, J. A. Kong, K. -H. Ding, and C. O. Ao, eds. (Wiley, 2001), pp. 124-132.

G. R. Liu, *Mesh Free Methods: Moving Beyond the Finite Element Method* (CRC Press, 2002).

[CrossRef]

D. Malacara, *Optical Shop Testing* (Wiley, 1978).

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional optical distortion correction for quantitative anterior segment OCT,” Invest. Ophthalmol. Vis. Sci. 50, 5796(2009), abstract.

L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A 24, 2783-2796 (2007).

[CrossRef]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15, 2204-2218 (2007).

[CrossRef]
[PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594-1600 (2002).

[CrossRef]
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the calculation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263-270 (2002).

[PubMed]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91, 251-264 (2008).

[CrossRef]
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the calculation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263-270 (2002).

[PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594-1600 (2002).

[CrossRef]
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the calculation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263-270 (2002).

[PubMed]

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371-381 (2006).

[CrossRef]
[PubMed]

N. Calvo, S. R. Idelsohn, and E. Onate, “The extended Delaunay tessellation,” Eng. Computat. 20, 583-600 (2003).

[CrossRef]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional optical distortion correction for quantitative anterior segment OCT,” Invest. Ophthalmol. Vis. Sci. 50, 5796(2009), abstract.

I. Babuska, U. Banerjee, and J. E. Osborn, “Generalized finite element methods: main ideas, results, and perspective,” Int. J. Computat. Methods 1, 67-103 (2004).

[CrossRef]

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).

[CrossRef]
[PubMed]

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).

[CrossRef]
[PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional optical distortion correction for quantitative anterior segment OCT,” Invest. Ophthalmol. Vis. Sci. 50, 5796(2009), abstract.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).

[CrossRef]
[PubMed]

L. Guibas, D. Knuth, and M. Sharir, “Randomized incremental construction of Delaunay and Voronoi diagrams,” Algorithmica 7, 381-413 (1992).

[CrossRef]

R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.

D. S. Kang, Y. J. Kim, and B. S. Shin, “Efficient large-scale terrain rendering method for real-world game simulation,” in *Technologies for E-Learning and Digital Entertainment: First International Conference, Edutainment 2006* (Springer, 2006), pp. 597-605.

[CrossRef]
[PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional optical distortion correction for quantitative anterior segment OCT,” Invest. Ophthalmol. Vis. Sci. 50, 5796(2009), abstract.

M. K. Smolek and S. D. Klyce, “Is keratoconus a true ectasia? An evaluation of corneal surface area,” Arch. Ophthalmol. 118, 1179-1186 (2000).

[PubMed]

G. Strang and G. Fix, *An Analysis of the Finite Element Method* (Prentice-Hall, 1973).

C. Touma and C. Gotsman, “Triangle mesh compression,” in *Proceedings of Graphics Interface '98* 26-34 (Canadian Information Processing Society, 1998).

L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, “Random rough surface simulations,” in *Scattering of Electromagnetic Waves: Numerical Simulations*, L. Tsang, J. A. Kong, K. -H. Ding, and C. O. Ao, eds. (Wiley, 2001), pp. 124-132.

R. Vanselow, “About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation,” Appl. Math. 46, 13-28 (2001).

[CrossRef]

H. Wendland, *Scattered Data Approximation* (Cambridge U. Press, 2004).

[CrossRef]

J. S. Witkowski and A. Grobelny, “Ray tracing method in a 3D analysis of fiber-optic elements,” Opt. Appl. 38, 281-294(2008).

R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.

J. Kohout, J. I. Kolingerová, and J. Žára, “Parallel Delaunay triangulation in *E*^{2} and *E*^{3} for computers with shared memory,” Parallel Comput. 31, 491-522 (2005).

[CrossRef]

L. Guibas, D. Knuth, and M. Sharir, “Randomized incremental construction of Delaunay and Voronoi diagrams,” Algorithmica 7, 381-413 (1992).

[CrossRef]

R. Vanselow, “About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation,” Appl. Math. 46, 13-28 (2001).

[CrossRef]

A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21, 984-987 (1982).

[CrossRef]
[PubMed]

A. Sharma and A. K. Ghatak, “Ray tracing in gradient-index lenses: computation of ray-surface intersection,” Appl. Opt. 25, 3409-3412 (1986).

[CrossRef]
[PubMed]

E. W. Marchand, “Rapid ray tracing in radial gradients,” Appl. Opt. 27, 465-467 (1988).

[CrossRef]
[PubMed]

Q. T. Liang and X. D. Zheng, “Ray-tracing calculations for uniaxial optical components with curved surfaces,” Appl. Opt. 30, 4521-4525 (1991).

[CrossRef]
[PubMed]

G. Beyerle and I. S. McDermid, “Ray-tracing formulas for refraction and internal reflection in uniaxial crystals,” Appl. Opt. 37, 7947-7953 (1998).

[CrossRef]

M. Izdebski, “Ray and wave tracing in uniaxial crystals perturbed by an external field,” Appl. Opt. 47, 2729-2738 (2008).

[CrossRef]
[PubMed]

M. K. Smolek and S. D. Klyce, “Is keratoconus a true ectasia? An evaluation of corneal surface area,” Arch. Ophthalmol. 118, 1179-1186 (2000).

[PubMed]

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91, 207-225 (2008).

[CrossRef]
[PubMed]

D. J. Meister and S. W. Fisher, “Progress in the spectacle correction of presbyopia. Part 2: Modern progressive lens technologies,” Clin. Exp. Optom. 91, 251-264 (2008).

[CrossRef]
[PubMed]

J. Allison, “Multiquadric radial basis functions for representing multidimensional high energy physics data,” Comput. Phys. Commun. 77, 377-395 (1993).

[CrossRef]

N. Calvo, S. R. Idelsohn, and E. Onate, “The extended Delaunay tessellation,” Eng. Computat. 20, 583-600 (2003).

[CrossRef]

D. R. Iskander, M. J. Collins, and B. Davis, “Optimal modeling of corneal surfaces with Zernike polynomials,” IEEE Trans. Biomed. Eng. 48, 87-95 (2001).

[CrossRef]
[PubMed]

F. L. Bookstein, “Principal warps: thin plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Machine Intell. 11, 567-585 (1989).

[CrossRef]

I. Babuska, U. Banerjee, and J. E. Osborn, “Generalized finite element methods: main ideas, results, and perspective,” Int. J. Computat. Methods 1, 67-103 (2004).

[CrossRef]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional optical distortion correction for quantitative anterior segment OCT,” Invest. Ophthalmol. Vis. Sci. 50, 5796(2009), abstract.

B. Delaunay, “Sur la sphère vide,” Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793-800 (1934).

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594-1600 (2002).

[CrossRef]
[PubMed]

W. A. Allen and J. R. Snyder, “Ray tracing through uncentered and aspheric surfaces,” J. Opt. Soc. Am. 42, 243-249 (1952).

[CrossRef]

D. T. Moore, “Ray tracing in tilted, decentered, displaced gradient-index optical systems,” J. Opt. Soc. Am. 66, 789-795 (1976).

[CrossRef]

G. H. Spencer and M. V. R. K. Murty, “General ray-tracing procedure,” J. Opt. Soc. Am. 52, 672-678 (1962).

[CrossRef]

O. N. Stavroudis, “Ray-tracing formulas for uniaxial crystals,” J. Opt. Soc. Am. 52, 187-191 (1962).

[CrossRef]

M. Herzberger, “Automatic ray tracing,” J. Opt. Soc. Am. 47, 736-739 (1957).

[CrossRef]

V. A. D. P. Sicam, J. Coppens, T. J. T. P. van den Berg, and R. G. L. van der Heijde, “Corneal surface reconstruction algorithm that uses Zernike polynomial representation,” J. Opt. Soc. Am. A 21, 1300-1306 (2004).

[CrossRef]

J. C. He, J. Gwiazda, F. Thorn, and R. Held, “Wave-front aberrations in the anterior corneal surface and the whole eye,” J. Opt. Soc. Am. A 20, 1155-1163 (2003).

[CrossRef]

J. Turuwhenua, “Corneal surface reconstruction algorithm using Zernike polynomial representation: improvements,” J. Opt. Soc. Am. A 24, 1551-1561 (2007).

[CrossRef]

L. Llorente, S. Marcos, C. Dorronsoro, and S. A. Burns, “Effect of sampling on real ocular aberration measurements,” J. Opt. Soc. Am. A 24, 2783-2796 (2007).

[CrossRef]

A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955-965 (2000).

[CrossRef]

X. Tian, G. Lai, and T. Yatagai, “Characterization of asymmetric optical waveguides by ray tracing,” J. Opt. Soc. Am. A 6, 1538-1543 (1989).

[CrossRef]

R. A. Egorchenkov and Y. A. Kravtsov, “Complex ray-tracing algorithms with application to optical problems,” J. Opt. Soc. Am. A 18, 650-656 (2001).

[CrossRef]

J. Schwiegerling, J. E. Greivenkamp, and J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12, 2105-2113 (1995).

[CrossRef]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697-1702 (2000).

[CrossRef]

S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “Validation of the calculation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263-270 (2002).

[PubMed]

W. A. Douthwaite, “Application of linear regression to videokeratoscope data for tilted surfaces,” Ophthal. Physiol. Opt. 22, 46-54 (2002).

[CrossRef]

J. S. Witkowski and A. Grobelny, “Ray tracing method in a 3D analysis of fiber-optic elements,” Opt. Appl. 38, 281-294(2008).

R. Navarro, L. González, and J. L. Hernández-Matamoros, “On the prediction of optical aberrations by personalized eye models,” Optom. Vis. Sci. 83, 371-381 (2006).

[CrossRef]
[PubMed]

J. Kohout, J. I. Kolingerová, and J. Žára, “Parallel Delaunay triangulation in *E*^{2} and *E*^{3} for computers with shared memory,” Parallel Comput. 31, 491-522 (2005).

[CrossRef]

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).

[CrossRef]
[PubMed]

L. A. Carvalho, “Computer algorithm for simulation of the human optical system and contribution of the cornea to the optical imperfections of the eye,” Revista de Física Aplicada e Instrumentação 16, 7-17 (2003).

D. Malacara, *Optical Shop Testing* (Wiley, 1978).

L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, “Random rough surface simulations,” in *Scattering of Electromagnetic Waves: Numerical Simulations*, L. Tsang, J. A. Kong, K. -H. Ding, and C. O. Ao, eds. (Wiley, 2001), pp. 124-132.

P. Beckmann, “Scattering of light by rough surfaces,” in *Progress in Optics*, E. Wolf, ed. (North-Holland, 1967), pp. 55-69.

G. R. Liu, *Mesh Free Methods: Moving Beyond the Finite Element Method* (CRC Press, 2002).

[CrossRef]

It should be noted that in the original Sharma formula in , a square term of *υ* is missing. This has been corrected on Eq. .

G. Strang and G. Fix, *An Analysis of the Finite Element Method* (Prentice-Hall, 1973).

P. L. George and H. Borouchaki, *Delaunay Triangulation and Meshing* (Editions Hermes, 1998).

R. A. Applegate, H. C. Howland, J. Buettner, A. J. Cottinghan, Jr., R. P. Sharp, and R. W. Yee, “Corneal aberrations before and after radial keratotomy (RK) calculated from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 58-61.

H. C. Howland, J. Buettner, and R. A. Applegate, “Computation of the shapes of normal corneas and their monochromatic aberrations from videokeratometric measurements,” in *Vision Science and Its Applications*, Vol. 2 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), pp. 54-57.

C. Touma and C. Gotsman, “Triangle mesh compression,” in *Proceedings of Graphics Interface '98* 26-34 (Canadian Information Processing Society, 1998).

D. S. Kang, Y. J. Kim, and B. S. Shin, “Efficient large-scale terrain rendering method for real-world game simulation,” in *Technologies for E-Learning and Digital Entertainment: First International Conference, Edutainment 2006* (Springer, 2006), pp. 597-605.

[CrossRef]
[PubMed]

Zemax Optical Design Program User's Manual (Zemax Development Corporation, 2007).

H. S. M. Coxeter, “Barycentric Coordinates,” in *Introduction to Geometry*, H. S. M. Coxeter, ed. (Wiley, 1969), pp. 216-221.

It may happen that the point *P* is located on the edge of the triangle (when either *u* or *v* from Eq. is equal to 0, or *u*+*v*=1), or even in the vertex (when both u and v are equal to 0 or either *u* or *v* is equal to 1), which means that it is common to two or more of the triangles that have a common edge (vertex), but the vectors normal to these triangles are different. In this situation, it is convenient to consider the mean value of the normal vector coordinates for further ray tracing calculations.

H. Wendland, *Scattered Data Approximation* (Cambridge U. Press, 2004).

[CrossRef]