Abstract

A localized surface plasmon resonance based fiber optic sensor for refractive index sensing has been analyzed theoretically. The effects of size of the spherical metal nanoparticle as well as the light sources on the performance of the sensor have been studied rigorously. It is observed that a diffuse light source along with an intensity modulation method gives better performance in terms of sensing range. In addition, the use of a diffuse source makes the sensing device very cheap and compact, which is an important issue for the commercial applications. The refractive index range of the sensor is larger than the ranges reported for various types of fiber optic sensors utilizing intensity modulation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. B. Guo, G. Song, and L. Chen, “Numerical study of subwavelength plasmonic waveguide,” Opt. Commun. 281, 1123-1128 (2008).
    [CrossRef]
  3. B. Leidberg, C. Nylander, and I. Sundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators A, Phys. 4, 299-304 (1983).
    [CrossRef]
  4. I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
    [CrossRef]
  5. R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
    [CrossRef]
  6. Rajan, S. Chand, and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component--Naringin,” Sens. Actuators B 115, 344-348 (2006).
    [CrossRef]
  7. Rajan , S. Chand, and B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide,” Sens. Actuators B 123, 661-666 (2007).
    [CrossRef]
  8. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213-220 (1993).
    [CrossRef]
  9. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486-1491 (2008).
    [CrossRef]
  10. R. K. Verma and B. D. Gupta, “Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fiber optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
    [CrossRef]
  11. A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
    [CrossRef]
  12. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996).
    [CrossRef]
  13. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156 (Part 2), 678-700 (1985).
    [CrossRef]
  14. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212-4217 (1999).
    [CrossRef]
  15. K.-H. Meiwes-Broer, Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer, 2000).
  16. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004).
    [CrossRef]
  17. A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004).
    [CrossRef] [PubMed]
  18. L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006).
    [CrossRef]
  19. T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213-1218 (2009).
    [CrossRef]
  20. T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317-325 (2007).
    [CrossRef]
  21. V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804-2809 (2009).
    [CrossRef] [PubMed]
  22. W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Opt. Lett. 31, 2556-2558 (2006).
    [CrossRef] [PubMed]
  23. B. D. Gupta, A. Sharma, and C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers,” Int. J. Optoelectron. 8, 409-418 (1993).
  24. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1999).
  25. Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study,” Appl. Opt. 46, 4563-4569 (2007).
    [CrossRef] [PubMed]
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1985).
  27. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1119(1983).
    [CrossRef] [PubMed]

2009

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213-1218 (2009).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804-2809 (2009).
[CrossRef] [PubMed]

2008

B. Guo, G. Song, and L. Chen, “Numerical study of subwavelength plasmonic waveguide,” Opt. Commun. 281, 1123-1128 (2008).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486-1491 (2008).
[CrossRef]

R. K. Verma and B. D. Gupta, “Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fiber optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

2007

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317-325 (2007).
[CrossRef]

Rajan , S. Chand, and B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide,” Sens. Actuators B 123, 661-666 (2007).
[CrossRef]

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study,” Appl. Opt. 46, 4563-4569 (2007).
[CrossRef] [PubMed]

2006

W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Opt. Lett. 31, 2556-2558 (2006).
[CrossRef] [PubMed]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006).
[CrossRef]

Rajan, S. Chand, and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component--Naringin,” Sens. Actuators B 115, 344-348 (2006).
[CrossRef]

2004

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004).
[CrossRef]

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

2001

R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

1999

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212-4217 (1999).
[CrossRef]

1996

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996).
[CrossRef]

1993

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

B. D. Gupta, A. Sharma, and C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers,” Int. J. Optoelectron. 8, 409-418 (1993).

1985

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156 (Part 2), 678-700 (1985).
[CrossRef]

1983

1978

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
[CrossRef]

Alexander, R. W.

Andrews, S. R.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Birks, T. A.

Brynda, E.

R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Chand, S.

Rajan , S. Chand, and B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide,” Sens. Actuators B 123, 661-666 (2007).
[CrossRef]

Rajan, S. Chand, and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component--Naringin,” Sens. Actuators B 115, 344-348 (2006).
[CrossRef]

Chau, L.-K.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006).
[CrossRef]

Chen, L.

B. Guo, G. Song, and L. Chen, “Numerical study of subwavelength plasmonic waveguide,” Opt. Commun. 281, 1123-1128 (2008).
[CrossRef]

Cheng, S.-F.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006).
[CrossRef]

Chung, M.-F.

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213-1218 (2009).
[CrossRef]

Ctyroký, J.

R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Ding, W.

Duyne, R. P. V.

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

Dwivedi, Y. S.

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212-4217 (1999).
[CrossRef]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004).
[CrossRef]

Genzel, L.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156 (Part 2), 678-700 (1985).
[CrossRef]

Ghatak, A.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1999).

Gordon, J. G.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
[CrossRef]

Guo, B.

B. Guo, G. Song, and L. Chen, “Numerical study of subwavelength plasmonic waveguide,” Opt. Commun. 281, 1123-1128 (2008).
[CrossRef]

Gupta, B. D.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486-1491 (2008).
[CrossRef]

R. K. Verma and B. D. Gupta, “Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fiber optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

Rajan , S. Chand, and B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide,” Sens. Actuators B 123, 661-666 (2007).
[CrossRef]

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study,” Appl. Opt. 46, 4563-4569 (2007).
[CrossRef] [PubMed]

Rajan, S. Chand, and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component--Naringin,” Sens. Actuators B 115, 344-348 (2006).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

B. D. Gupta, A. Sharma, and C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers,” Int. J. Optoelectron. 8, 409-418 (1993).

Haes, A. J.

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

Homola, J.

R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

Kreibig, U.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156 (Part 2), 678-700 (1985).
[CrossRef]

Kundu, T.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804-2809 (2009).
[CrossRef] [PubMed]

Leidberg, B.

B. Leidberg, C. Nylander, and I. Sundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators A, Phys. 4, 299-304 (1983).
[CrossRef]

Lin, T.-J.

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213-1218 (2009).
[CrossRef]

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317-325 (2007).
[CrossRef]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006).
[CrossRef]

Lin, Y.-F.

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212-4217 (1999).
[CrossRef]

Long, L. L.

Lou, C.-T.

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317-325 (2007).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1985).

Maier, S. A.

Meiwes-Broer, K.-H.

K.-H. Meiwes-Broer, Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer, 2000).

Mukherji, S.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804-2809 (2009).
[CrossRef] [PubMed]

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996).
[CrossRef]

Nylander, C.

B. Leidberg, C. Nylander, and I. Sundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators A, Phys. 4, 299-304 (1983).
[CrossRef]

Ordal, M. A.

Philpott, M. R.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
[CrossRef]

Pockrand, I.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Sai, V. V. R.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804-2809 (2009).
[CrossRef] [PubMed]

Sharma, A.

B. D. Gupta, A. Sharma, and C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers,” Int. J. Optoelectron. 8, 409-418 (1993).

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486-1491 (2008).
[CrossRef]

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study,” Appl. Opt. 46, 4563-4569 (2007).
[CrossRef] [PubMed]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

Singh, C. D.

B. D. Gupta, A. Sharma, and C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers,” Int. J. Optoelectron. 8, 409-418 (1993).

Slavík, R.

R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1985).

Song, G.

B. Guo, G. Song, and L. Chen, “Numerical study of subwavelength plasmonic waveguide,” Opt. Commun. 281, 1123-1128 (2008).
[CrossRef]

Sundstrom, I.

B. Leidberg, C. Nylander, and I. Sundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators A, Phys. 4, 299-304 (1983).
[CrossRef]

Swalen, J. D.

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
[CrossRef]

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1999).

Verma, R. K.

R. K. Verma and B. D. Gupta, “Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fiber optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486-1491 (2008).
[CrossRef]

Ward, C. A.

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

Adv. Mater.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685-1706 (2004).
[CrossRef]

Anal. Bioanal. Chem.

A. J. Haes and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920-930 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Biosens. Bioelectron.

T.-J. Lin and M.-F. Chung, “Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron. 24, 1213-1218 (2009).
[CrossRef]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24, 2804-2809 (2009).
[CrossRef] [PubMed]

Int. J. Optoelectron.

B. D. Gupta, A. Sharma, and C. D. Singh, “Evanescent wave absorption sensors based on uniform and tapered fibers,” Int. J. Optoelectron. 8, 409-418 (1993).

J. Phys. Chem. B

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212-4217 (1999).
[CrossRef]

J. Phys. D

R. K. Verma and B. D. Gupta, “Theoretical modeling of a bi-dimensional U-shaped surface plasmon resonance based fiber optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

J. Supercrit. Fluids

T.-J. Lin and C.-T. Lou, “Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions,” J. Supercrit. Fluids 41, 317-325 (2007).
[CrossRef]

Langmuir

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788-800 (1996).
[CrossRef]

Opt. Commun.

B. Guo, G. Song, and L. Chen, “Numerical study of subwavelength plasmonic waveguide,” Opt. Commun. 281, 1123-1128 (2008).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281, 1486-1491 (2008).
[CrossRef]

Opt. Lett.

Sens. Actuators A, Phys.

B. Leidberg, C. Nylander, and I. Sundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators A, Phys. 4, 299-304 (1983).
[CrossRef]

Sens. Actuators B

R. Slavík, J. Homola, J. Ctyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Rajan, S. Chand, and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component--Naringin,” Sens. Actuators B 115, 344-348 (2006).
[CrossRef]

Rajan , S. Chand, and B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide,” Sens. Actuators B 123, 661-666 (2007).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213-220 (1993).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sens. Actuators B 113, 100-105(2006).
[CrossRef]

Surf. Sci.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156 (Part 2), 678-700 (1985).
[CrossRef]

I. Pockrand, J. D. Swalen, J. G. Gordon, and M. R. Philpott, “Surface plasmon spectroscopy of organic monolayer assemblies,” Surf. Sci. 74, 237-244 (1978).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

K.-H. Meiwes-Broer, Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer, 2000).

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1999).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed fiber optic LSPR probe.

Fig. 2
Fig. 2

Variation of the extinction of a metal nanoparticle with wavelength for different dielectric media for radii R = 5 nm (solid curves) and R = 10 nm (dotted curves) of nanoparticles.

Fig. 3
Fig. 3

(a) Variation of effective evanescent absorbance with wavelength for different values of the dielectric constant of the sensing medium. (b) Variation of effective evanescent absorbance with wavelength for different values of the radius of the nanoparticle.

Fig. 4
Fig. 4

Variation of effective evanescent absorbance with wavelength for a monochromatic source.

Fig. 5
Fig. 5

(a) Variation of evanescent absorbance with dielectric constant of the sensing medium for two different diffuse sources. (b) Variation of effective evanescent absorbance with dielectric constant of the sensing medium for different source bandwidths.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

P = P 0 exp ( γ L ) ,
γ ( θ , λ ) = N E λ n 2 cos θ cot θ 2 π ρ L n 1 2 cos α cos 2 θ c ( sin 2 θ sin 2 θ c ) 1 / 2 ,
N = 2 π ρ L / 4 R 2 ,
A ( θ , λ ) = γ ( θ , λ ) L / N .
C ext ( λ , R ) = 24 π 2 R 3 ε m 3 / 2 λ ε 2 ( λ , R ) [ ( ε 1 ( λ , R ) + 2 ε m ) 2 + ε 2 2 ( λ , R ) ] ,
E ( λ , R ) = C ext ( λ , R ) π R 2 .
E ( λ , R ) = 24 π R ε m 3 / 2 λ ε 2 ( λ , R ) [ ( ε 1 ( λ , R ) + 2 ε m ) 2 + ε 2 2 ( λ , R ) ] .
ε 1 ( λ , R ) = 1 λ 2 λ c 2 λ p 2 ( λ c 2 + λ 2 ) ,
ε 2 ( λ , R ) = λ 3 λ c λ p 2 ( λ c 2 + λ 2 ) ,
λ p = 3 λ p b .
λ c = [ λ c b 1 + v f 2 π R c ] 1 ,
d P n 1 2 sin θ cos θ ( 1 n 1 2 cos 2 θ ) 2 d θ .
A eff ( λ ) = θ 1 π / 2 A ( θ , λ ) n 1 2 sin θ cos θ ( 1 n 1 2 cos 2 θ ) 2 d θ θ 1 π / 2 n 1 2 sin θ cos θ ( 1 n 1 2 cos 2 θ ) 2 d θ ,
P ( λ ) = exp { ( λ λ 0 ) 2 / 2 Δ λ 2 } .
d P n 1 2 sin θ cos θ d θ .
A eff = θ 1 π / 2 λ 1 λ 2 0 π / 2 P ( λ ) A ( θ ) n 1 2 sin θ cos θ d θ d λ d α θ 1 π / 2 λ 1 λ 2 0 π / 2 P ( λ ) n 1 2 sin θ cos θ d θ d λ d α .

Metrics