Abstract

A two-layer tissue diffuse reflectance model is described. The model is based on a simple one-layer model that we have recently developed and successfully applied to the analysis of in vivo skin reflectance. The model, which is specifically designed for use with a fiber optic probe, has as its main features simplicity and ease of application, and it is capable of estimating the thickness and the absorption coefficient of a superficial absorbing and scattering layer. Both of these parameters are of great interest for the noninvasive study of epithelial biological tissues. The validity range and accuracy of the model are tested on tissue phantoms in both the forward and inverse modes of application.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple two-layer reflectance model for biological tissue applications: lower absorbing layer

George Zonios and Aikaterini Dimou
Appl. Opt. 49(27) 5026-5031 (2010)

Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue

Quanzeng Wang, Karthik Shastri, and T. Joshua Pfefer
Appl. Opt. 49(28) 5309-5320 (2010)

“Look-Ahead Distance” of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study

Zhiyu Qian, Sundar S. Victor, Yueqing Gu, Cole A. Giller, and Hanli Liu
Opt. Express 11(16) 1844-1855 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription