Abstract

A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 5505-5516 (2006).
    [CrossRef] [PubMed]
  2. A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 1883-1900 (1992).
    [CrossRef] [PubMed]
  3. S. H. Law, S. C. Fleming, N. Suchowerska, and D. R. McKenzie, “Optical fiber design and the trapping of Cerenkov radiation,” Appl. Opt. 45, 9151-9159 (2006).
    [CrossRef] [PubMed]
  4. S. H. Law, N. Suchowerska, D. R. McKenzie, S. C. Fleming, and T. Lin, “Transmission of Cerenkov radiation in optical fibers,” Opt. Lett. 32, 1205-1207 (2007).
    [CrossRef] [PubMed]
  5. S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, “Optical filtering and spectral measurements of radiation induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945-958 (1993).
    [CrossRef]
  6. J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
    [CrossRef]
  7. A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
    [CrossRef] [PubMed]
  8. W. K. H. Panofsky, Classical Electricity and Magnetism (Addison-Wesley, 1962).
  9. A. Weinert, Plastic Optical Fibers (Publicis MCD Verlag, 1992).
  10. C. Constantinou, F. H. Attix, and B. R. Paliwal, “A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations,” Med. Phys. 9436-441 (1982).
    [CrossRef] [PubMed]
  11. P. Metcalfe, T. Kron, and P. Hoban, The Physics of Radiotherapy X-Rays from Linear Accelerators (Medical Physics Publishing, 1997).

2007 (1)

2006 (2)

S. H. Law, S. C. Fleming, N. Suchowerska, and D. R. McKenzie, “Optical fiber design and the trapping of Cerenkov radiation,” Appl. Opt. 45, 9151-9159 (2006).
[CrossRef] [PubMed]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 5505-5516 (2006).
[CrossRef] [PubMed]

2005 (1)

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

2002 (1)

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

1993 (1)

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, “Optical filtering and spectral measurements of radiation induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945-958 (1993).
[CrossRef]

1992 (1)

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 1883-1900 (1992).
[CrossRef] [PubMed]

1982 (1)

C. Constantinou, F. H. Attix, and B. R. Paliwal, “A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations,” Med. Phys. 9436-441 (1982).
[CrossRef] [PubMed]

Attix, F. H.

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 1883-1900 (1992).
[CrossRef] [PubMed]

C. Constantinou, F. H. Attix, and B. R. Paliwal, “A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations,” Med. Phys. 9436-441 (1982).
[CrossRef] [PubMed]

Ban, G.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Batalla, A.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

Battala, A.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Beddar, A. S.

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, “Optical filtering and spectral measurements of radiation induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945-958 (1993).
[CrossRef]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 1883-1900 (1992).
[CrossRef] [PubMed]

Bellaize, N.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Brun, C. Le

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Colin, J.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

Constantinou, C.

C. Constantinou, F. H. Attix, and B. R. Paliwal, “A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations,” Med. Phys. 9436-441 (1982).
[CrossRef] [PubMed]

de Boer, S. F.

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, “Optical filtering and spectral measurements of radiation induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945-958 (1993).
[CrossRef]

Elsey, J.

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 5505-5516 (2006).
[CrossRef] [PubMed]

Fleming, S. C.

Fontbonne, J. M.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Frelin, A. M.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

Hoban, P.

P. Metcalfe, T. Kron, and P. Hoban, The Physics of Radiotherapy X-Rays from Linear Accelerators (Medical Physics Publishing, 1997).

Iltis, G.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Isambert, A.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

Kron, T.

P. Metcalfe, T. Kron, and P. Hoban, The Physics of Radiotherapy X-Rays from Linear Accelerators (Medical Physics Publishing, 1997).

Labalme, M.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

Lambert, J.

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 5505-5516 (2006).
[CrossRef] [PubMed]

Law, S.

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 5505-5516 (2006).
[CrossRef] [PubMed]

Law, S. H.

Leroux, T.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

Lin, T.

Mackie, T. R.

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 1883-1900 (1992).
[CrossRef] [PubMed]

McKenzie, D. R.

Mercier, K.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Metcalfe, P.

P. Metcalfe, T. Kron, and P. Hoban, The Physics of Radiotherapy X-Rays from Linear Accelerators (Medical Physics Publishing, 1997).

Motin, J. C.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Paliwal, B. R.

C. Constantinou, F. H. Attix, and B. R. Paliwal, “A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations,” Med. Phys. 9436-441 (1982).
[CrossRef] [PubMed]

Panofsky, W. K. H.

W. K. H. Panofsky, Classical Electricity and Magnetism (Addison-Wesley, 1962).

Rawlinson, J. A.

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, “Optical filtering and spectral measurements of radiation induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945-958 (1993).
[CrossRef]

Suchowerska, N.

Tamain, B.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Tillier, J.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Vela, A.

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

Vernhes, J. C.

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Weinert, A.

A. Weinert, Plastic Optical Fibers (Publicis MCD Verlag, 1992).

Appl. Opt. (1)

IEEE Trans. Nucl. Sci. (1)

J. M. Fontbonne, G. Iltis, G. Ban, A. Battala, J. C. Vernhes, J. Tillier, N. Bellaize, C. Le Brun, B. Tamain, K. Mercier, and J. C. Motin, “Scintillating fiber dosimeter for radiation therapy accelerator,” IEEE Trans. Nucl. Sci. 492223-2227(2002).
[CrossRef]

Med. Phys. (2)

A. M. Frelin, J. M. Fontbonne, G. Ban, J. Colin, M. Labalme, A. Batalla, A. Isambert, A. Vela, and T. Leroux, “Spectral discrimination of Cerenkov radiation in scintillating dosimeters,” Med. Phys. 32, 3000-3006 (2005).
[CrossRef] [PubMed]

C. Constantinou, F. H. Attix, and B. R. Paliwal, “A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations,” Med. Phys. 9436-441 (1982).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (3)

S. F. de Boer, A. S. Beddar, and J. A. Rawlinson, “Optical filtering and spectral measurements of radiation induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945-958 (1993).
[CrossRef]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, and N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51, 5505-5516 (2006).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, and F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37, 1883-1900 (1992).
[CrossRef] [PubMed]

Other (3)

W. K. H. Panofsky, Classical Electricity and Magnetism (Addison-Wesley, 1962).

A. Weinert, Plastic Optical Fibers (Publicis MCD Verlag, 1992).

P. Metcalfe, T. Kron, and P. Hoban, The Physics of Radiotherapy X-Rays from Linear Accelerators (Medical Physics Publishing, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Theoretical spectrum, calculated from Eq. (1), of Cerenkov radiation over a 400 to 700 nm wavelength range, for a wavelength independent refractive index of 1.5.

Fig. 2
Fig. 2

Attenuation of light in a 1 mm diameter PMMA fiber over a 400 to 700 nm wavelength range [9].

Fig. 3
Fig. 3

Theoretical spectrum of Cerenkov radiation after traveling through distances ranging from 1 m to 50 m of a 1 mm diameter PMMA fiber, obtained by combining the results of Figs. 1, 2.

Fig. 4
Fig. 4

Relative response of the monochromator/PMT combination as a function of wavelength. The graph is normalized at a wavelength of 430 nm , where the response is maximum.

Fig. 5
Fig. 5

Schematic diagram of the experimental setup used to measure the spectrum of Cerenkov light generated in a PMMA fiber as a function of angle θ between 90 ° and 90 ° . A 200 mm length of PMMA fiber was irradiated in air with a 9 MeV electron beam from a Varian 21iX linear accelerator.

Fig. 6
Fig. 6

Spectrum of Cerenkov light generated by a 9 MeV electron beam in a 200 mm length of 1 mm diameter PMMA fiber after transmission through an additional 20 m of fiber. The fiber was irradiated at angles of 30 ° , 45 ° , and 60 ° to the fiber axis. The signal at 90 ° was too small to be detected. Error bars are shown for the 45 ° case and are of a similar magnitude for the other two angles.

Fig. 7
Fig. 7

Experimental setup that was used to measure the spectrum of Cerenkov light generated by a 6 MV photon beam in a 100 mm length of 1 mm diameter PMMA fiber. The light was transmitted through an additional length of 20 m of PMMA fiber.

Fig. 8
Fig. 8

Spectrum of Cerenkov light generated by a 6 MV photon field in a 100 mm length of 1 mm diameter PMMA fiber after transmission through 20 m of fiber. The fiber was irradiated with a 10 c m × 10 cm field. Error bars are shown for the 45 ° case at 15 mm depth and are of a magnitude similar to the other cases.

Fig. 9
Fig. 9

Experimental setup that was used to increase the intensity of Cerenkov light generated in a 6 MV photon beam to enable more accurate measurement of its spectrum. The spectrum of Cerenkov light generated in a 2 m length of 1 mm diameter PMMA fiber was measured on the surface of a Solid Water phantom and at a depth of 15 mm and 110 mm . The light generated was transmitted through three 20 m lengths of paired PMMA fiber to a spectrometer (six parallel fibers in total).

Fig. 10
Fig. 10

Spectrum of Cerenkov light generated in a 2 m length of 1 mm diameter PMMA fiber after transmission through 20 m of fiber. The fiber was irradiated with a 25 c m × 25 cm 6 MV photon beam at 90 ° to the fiber axis. The spectra are normalized at a wavelength of 500 nm . Error bars are shown for the measurements made on the surface and are of a similar magnitude to those at the depths of 15 and 110 mm . The theoretical Cerenkov spectrum from Fig. 3 is shown after attenuation through a 10, 20, and 50 m length of PMMA fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) d λ = e 2 4 π ε 0 c 2 ( 1 c 2 n ( λ ) 2 v 2 ) d λ λ .
I 1 c 2 n 2 v 2 .
sin θ = c n v .
θ = sin 1 ( 1 n ) .

Metrics