Abstract

We report a new design of an optical biochip based on a double integrating sphere system to quantify the absolute number of the emitted photons or the total photon flux by a whole cell bioluminescent biosensor, for water toxicity detection, based on genetically engineered Escherichia coli bacteria carrying a recA::luxCDABE promoter–reporter fusion. The new design of the double integrating sphere system does not require any external standard light source for calibration of the tested bioluminescent solution and allows a direct determination of the total photon flux of the bioluminescent solution. In our design, we required that the two spheres are symmetric (have the same radius and reflectance) with a surface area larger than the cut cap area between the spheres.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Patel, “Biosensors for measurement of analytes implicated in food safety: a review,” Trends Anal. Chem. 21, 96-115 (2002).
    [CrossRef]
  2. S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
    [CrossRef]
  3. R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, 1998).
  4. H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006).
    [CrossRef]
  5. R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
    [CrossRef] [PubMed]
  6. G. K. Turner, “Measurement of light from chemical or biochemical reactions,” in Bioluminescence and Chemiluminescence: Instruments and Applications, K. Van Dyke, ed. (CRC Press, 1985), Vol. I.
  7. K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004).
    [CrossRef] [PubMed]
  8. M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
    [CrossRef]
  9. R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
    [CrossRef]
  10. S. Belkin, “Microbial whole-cell sensing systems of environmental pollutants,” Curr. Opin. Microbiol. 6, 206-212 (2003).
    [CrossRef] [PubMed]
  11. S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
    [CrossRef]
  12. J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002).
    [CrossRef]
  13. Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
    [CrossRef] [PubMed]
  14. J. Lee, “Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide,” Biochem. 11, 3350-3359 (1972).
    [CrossRef]
  15. J. Lee and C. Murphy, “Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme,” Biochem. 20, 2259-2268 (1975).
  16. H. H. Seliger and W. D. McElroy, “Spectral emission and quantum yield of firefly bioluminescence,” Arch. Biochem. Biophys. 88, 136-141 (1960).
    [CrossRef] [PubMed]
  17. L. Lee and H. H. Seliger, “Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence,” Photochem. Photobiol. 4, 1015-1048(1965).
    [CrossRef] [PubMed]
  18. D. J. O'Kane and J. Lee, “Absolute calibration of luminometers with low-level light standards,” Methods Enzymol. 305, 87-96 (2000).
    [CrossRef] [PubMed]
  19. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
    [CrossRef]
  20. J. A. Jacquez and H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460-470 (1955).
    [CrossRef]
  21. Y. Ohno, “Integrating sphere simulation: application to total flux scale realization,” Appl. Opt. 33, 2637-2646(1994).
    [CrossRef] [PubMed]
  22. H. L. Tardy, “Matrix method for integrating sphere calculation,” J. Opt. Soc. Am. A 8, 1411-1418 (1991).
    [CrossRef]
  23. J. W. Pickering, S. A. Prahi, N. V. Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 339-410 (1993).
    [CrossRef]
  24. G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).
    [CrossRef]
  25. J. F. Clare, “Comparison of four analytic methods for calculation of irradiance in integrating spheres,” J. Opt. Soc. Am. A 15, 3086-3096 (1998).
    [CrossRef]
  26. D. G. Goebel, “Generalized integrating sphere theory,” Appl. Opt. 6, 125-128 (1967).
    [CrossRef] [PubMed]
  27. M. N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (Wiley, 1973).
  28. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Taylor and Francis, 1992).
  29. H. L. Tardy, “Flat-sample and limited field effects in integrating sphere measurements,” J. Opt. Soc. Am. A 5, 241-245(1988).
    [CrossRef]
  30. L. M. Hanssen, “Effects of restricting the detector field of view when using integrating spheres,” Appl. Opt. 28, 2097-2103(1989).
    [CrossRef] [PubMed]
  31. A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
    [PubMed]
  32. A. V. Prokhorov, S. N. Mekhontsev, and L. M. Hanssen,” Monte Carlo modeling of integrating sphere reflectometer,” Appl. Opt. 42, 3832-3842 (2003).
    [CrossRef] [PubMed]

2008 (2)

R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

2007 (1)

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

2006 (1)

H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006).
[CrossRef]

2005 (1)

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002).
[CrossRef]

P. D. Patel, “Biosensors for measurement of analytes implicated in food safety: a review,” Trends Anal. Chem. 21, 96-115 (2002).
[CrossRef]

2001 (1)

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

2000 (2)

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

D. J. O'Kane and J. Lee, “Absolute calibration of luminometers with low-level light standards,” Methods Enzymol. 305, 87-96 (2000).
[CrossRef] [PubMed]

1999 (1)

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).
[CrossRef]

1998 (1)

1997 (2)

A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
[PubMed]

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

1994 (1)

1993 (1)

1991 (1)

1989 (1)

1988 (1)

1975 (1)

J. Lee and C. Murphy, “Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme,” Biochem. 20, 2259-2268 (1975).

1972 (1)

J. Lee, “Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide,” Biochem. 11, 3350-3359 (1972).
[CrossRef]

1967 (1)

1965 (1)

L. Lee and H. H. Seliger, “Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence,” Photochem. Photobiol. 4, 1015-1048(1965).
[CrossRef] [PubMed]

1960 (1)

H. H. Seliger and W. D. McElroy, “Spectral emission and quantum yield of firefly bioluminescence,” Arch. Biochem. Biophys. 88, 136-141 (1960).
[CrossRef] [PubMed]

1955 (1)

Akiyama, H.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Amog, R.

R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
[CrossRef]

Ando, Y.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Applegate, B. M.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Arnott, J. C.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Asakawa, H.

H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006).
[CrossRef]

Barrett, G.

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

Beek, J. F.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).
[CrossRef]

J. W. Pickering, S. A. Prahi, N. V. Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 339-410 (1993).
[CrossRef]

Belkin, S.

R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
[CrossRef]

S. Belkin, “Microbial whole-cell sensing systems of environmental pollutants,” Curr. Opin. Microbiol. 6, 206-212 (2003).
[CrossRef] [PubMed]

J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002).
[CrossRef]

A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
[PubMed]

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

Biran, D.

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

Bolton, E. K.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Clare, J. F.

Dadon, S.

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

Daniel, R.

R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
[CrossRef]

Daunert, S.

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

de Vries, G.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).
[CrossRef]

Diamand, Y. S.

R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
[CrossRef]

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

El Gamal, A.

K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004).
[CrossRef] [PubMed]

Eltoukhy, H.

K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004).
[CrossRef] [PubMed]

Enomoto, T.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Feliciano, J. S.

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

Gemert, M. J.

Goebel, D. G.

Guillorn, M. A.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Hanssen, L. M.

Haruyama, T.

H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006).
[CrossRef]

Hassibi, A.

K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004).
[CrossRef] [PubMed]

Haugland, R. P.

R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, 1998).

Howell, J. R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Taylor and Francis, 1992).

Irie, T.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Jacquez, J. A.

Kubota, H.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Kuppenheim, H. F.

Larossa, R. A.

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
[PubMed]

Lee, J.

D. J. O'Kane and J. Lee, “Absolute calibration of luminometers with low-level light standards,” Methods Enzymol. 305, 87-96 (2000).
[CrossRef] [PubMed]

J. Lee and C. Murphy, “Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme,” Biochem. 20, 2259-2268 (1975).

J. Lee, “Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide,” Biochem. 11, 3350-3359 (1972).
[CrossRef]

Lee, L.

L. Lee and H. H. Seliger, “Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence,” Photochem. Photobiol. 4, 1015-1048(1965).
[CrossRef] [PubMed]

Lev, O.

J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002).
[CrossRef]

Lucassen, G. W.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).
[CrossRef]

Maeda, T.

H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006).
[CrossRef]

McElroy, W. D.

H. H. Seliger and W. D. McElroy, “Spectral emission and quantum yield of firefly bioluminescence,” Arch. Biochem. Biophys. 88, 136-141 (1960).
[CrossRef] [PubMed]

Mekhontsev, S. N.

Murphy, C.

J. Lee and C. Murphy, “Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme,” Biochem. 20, 2259-2268 (1975).

Neufeld, T.

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

Nivens, D. E.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Niwa, K.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Ogawa, I. H.

H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006).
[CrossRef]

Ohmiya, Y.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Ohmiya,, Y.

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Ohno, Y.

O'Kane, D. J.

D. J. O'Kane and J. Lee, “Absolute calibration of luminometers with low-level light standards,” Methods Enzymol. 305, 87-96 (2000).
[CrossRef] [PubMed]

Ozisik, M. N.

M. N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (Wiley, 1973).

Patel, P. D.

P. D. Patel, “Biosensors for measurement of analytes implicated in food safety: a review,” Trends Anal. Chem. 21, 96-115 (2002).
[CrossRef]

Patterson, G.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Pickering, J. W.

Popovtzer, R.

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

Prahi, S. A.

Premkumar, J. R.

J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002).
[CrossRef]

Prokhorov, A. V.

Ripp, S.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Rishpon, J.

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

Rochelle, J. M.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Ron, A.

R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
[CrossRef]

Ron, E. Z.

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

Rosen, R.

J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002).
[CrossRef]

Salama, K.

K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004).
[CrossRef] [PubMed]

Sayler, G. S.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Seliger, H. H.

L. Lee and H. H. Seliger, “Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence,” Photochem. Photobiol. 4, 1015-1048(1965).
[CrossRef] [PubMed]

H. H. Seliger and W. D. McElroy, “Spectral emission and quantum yield of firefly bioluminescence,” Arch. Biochem. Biophys. 88, 136-141 (1960).
[CrossRef] [PubMed]

Shetty, R. S.

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

Shrestha, S.

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

Siegel, R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Taylor and Francis, 1992).

Simpson, M. L.

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Smulski, D. R.

A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
[PubMed]

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

Spencer, W. S.

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

Sterenborg, H. J.

Tardy, H. L.

Turner, G. K.

G. K. Turner, “Measurement of light from chemical or biochemical reactions,” in Bioluminescence and Chemiluminescence: Instruments and Applications, K. Van Dyke, ed. (CRC Press, 1985), Vol. I.

Van Dyk, T. K.

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

Van Gemert, M. J.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).
[CrossRef]

Vandyke, T. K.

A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
[PubMed]

Vollmer, A. C.

A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
[PubMed]

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

Wieringen, N. V.

Yamada, N.

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Analyt. Chim. Acta (1)

J. R. Premkumar, R. Rosen, S. Belkin, and O. Lev, “Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films,” Analyt. Chim. Acta 462, 11-23 (2002).
[CrossRef]

Appl. Environ. Microbiol. (1)

A. C. Vollmer, S. Belkin, D. R. Smulski, T. K. Vandyke, and R. A. Larossa, “Detection of DNA damage by use of Escherichia coli carrying recA9::lux, uvrA9::lux, or alkA9::lux reporter plasmids,” Appl. Environ. Microbiol. 63, 2566-2571 (1997).
[PubMed]

Appl. Opt. (5)

Arch. Biochem. Biophys. (1)

H. H. Seliger and W. D. McElroy, “Spectral emission and quantum yield of firefly bioluminescence,” Arch. Biochem. Biophys. 88, 136-141 (1960).
[CrossRef] [PubMed]

Biochem. (2)

J. Lee, “Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide,” Biochem. 11, 3350-3359 (1972).
[CrossRef]

J. Lee and C. Murphy, “Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme,” Biochem. 20, 2259-2268 (1975).

Biosens. Bioelectron. (2)

K. Salama, H. Eltoukhy, A. Hassibi, and A. El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosens. Bioelectron. 19, 1377-1386 (2004).
[CrossRef] [PubMed]

R. Daniel, R. Amog, A. Ron, S. Belkin, and Y. S. Diamand, “Modeling and measurement of whole-cell bioluminescent biosensor based on single photon avalanche diode,” Biosens. Bioelectron. 24, 882-887 (2008).
[CrossRef]

Chem. Rev. (1)

S. Daunert, G. Barrett, J. S. Feliciano, R. S. Shetty, S. Shrestha and W. S. Spencer, “Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes (review),” Chem. Rev. 100, 2705-2738 (2000).
[CrossRef]

Curr. Opin. Microbiol. (1)

S. Belkin, “Microbial whole-cell sensing systems of environmental pollutants,” Curr. Opin. Microbiol. 6, 206-212 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. Van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5, 944-947 (1999).
[CrossRef]

J. Biol. Phys. Chem. (1)

H. Asakawa, T. Maeda, I. H. Ogawa, and T. Haruyama, “A cellular bioassay for TNT detection using engineered Pseudomonas sp. Strain TM101 for systematic bioremediation,” J. Biol. Phys. Chem. 6, 119-123 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Methods Enzymol. (1)

D. J. O'Kane and J. Lee, “Absolute calibration of luminometers with low-level light standards,” Methods Enzymol. 305, 87-96 (2000).
[CrossRef] [PubMed]

Nano Lett. (1)

R. Popovtzer, T. Neufeld, D. Biran, E. Z. Ron, J. Rishpon, and Y. S. Diamand, “Novel integrated electrochemical nano-biochip for toxicity detection in water,” Nano Lett. 5, 1023-1027 (2005).
[CrossRef] [PubMed]

Nature Photon. Lett. (1)

Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, and H. Akiyama, “Firefly bioluminescence quantum yield and color change by pH-sensitive green emission,” Nature Photon. Lett. 2, 44-47 (2008).
[CrossRef]

Photochem. Photobiol. (2)

L. Lee and H. H. Seliger, “Absolute spectral sensitivity of phototubes and the application to the measurement of the absolute quantum yields of chemiluminescence and bioluminescence,” Photochem. Photobiol. 4, 1015-1048(1965).
[CrossRef] [PubMed]

Y. Ando, K. Niwa, N. Yamada, T. Irie, T. Enomoto, H. Kubota, Y. Ohmiya, and H. Akiyama, “Development of a quantitative bio/ chemiluminescence spectrometer determining quantum yields: re-examination of aqueous luminol chemiluminescence standard,” Photochem. Photobiol. 83, 1205-1210 (2007).
[CrossRef] [PubMed]

Sens. Actuat. B (1)

M. L. Simpson, G. S. Sayler, G. Patterson, D. E. Nivens, E. K. Bolton, J. M. Rochelle, J. C. Arnott, B. M. Applegate, S. Ripp, and M. A. Guillorn, “An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit,” Sens. Actuat. B 72, 134-140 (2001).
[CrossRef]

Trends Anal. Chem. (1)

P. D. Patel, “Biosensors for measurement of analytes implicated in food safety: a review,” Trends Anal. Chem. 21, 96-115 (2002).
[CrossRef]

Water Res. (1)

S. Belkin, D. R. Smulski, S. Dadon, A. C. Vollmer, T. K. Van Dyk, and R. A. Larossa, “A panel of stress-responsive luminous bacteria for the detection of selected toxicants,” Water Res. 31, 3009-3016 (1997).
[CrossRef]

Other (4)

G. K. Turner, “Measurement of light from chemical or biochemical reactions,” in Bioluminescence and Chemiluminescence: Instruments and Applications, K. Van Dyke, ed. (CRC Press, 1985), Vol. I.

R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, 1998).

M. N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (Wiley, 1973).

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 3rd ed. (Taylor and Francis, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic description of the double integrating sphere system.

Fig. 2
Fig. 2

Double sphere system with a cap area A C .

Fig. 3
Fig. 3

(a) Double integrating sphere system design; (b) layout and cross section of the baffle design.

Fig. 4
Fig. 4

Structure and dimensions of (a) the limited FOV cell and (b) the tested cell.

Fig. 5
Fig. 5

Schematic drawing of the bioluminescence experiential setup based on a double integrating sphere system.

Fig. 6
Fig. 6

(a) Reflectance asymmetric coefficients experimental setup; the detectors are connected to a diffuser. (b) Coefficient experimental setup; the detector are connected to a diffuser. Radii of both spheres is R = 15 mm , the exit ports are R D = 1 mm , and the same bioluminescence light source is used.

Fig. 7
Fig. 7

Simulation results of asymmetric reflectance coefficient versus reflectance. Sphere radius is 15 mm , and the detector radius is 1 mm .

Fig. 8
Fig. 8

Experimental results of bioluminescent signal kinetics for different toxin concentrations (0, 12, and 16 ppm ) using the double integrating sphere system and the double-plate cell system [13, 19].

Tables (4)

Tables Icon

Table 1 Manufacture Calibration Results: the Absolute Sensitivity of the Photodetector

Tables Icon

Table 2 Double Integrating Sphere System Dimensions

Tables Icon

Table 3 Measured Characterized System Coefficients

Tables Icon

Table 4 Measured Flux and Estimation Geometrical Light: Collection Efficiency of the Limited FOV Cell

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

H ( Ω ) = H 0 ( Ω ) + A H ( Ω ) ρ ( Ω ) G ( Ω , Ω ) d A ,
G ( Ω , Ω ) = ( s · n ) ( s · n ) π | s | 4 ,
H ( Ω ) = H 0 ( Ω ) + j H j ρ j A j G ( Ω , Ω ) d A j .
F i j = 1 A i A i A j G ( Ω , Ω ) d A j d A i .
H i = H 0 , i + M i j H j ,
M i j = ρ j F i j .
H = ( I M ) 1 H 0 ,
H = ϕ 0 A 1 1 1 ρ 1 ( A 1 A d A C A 1 ) .
H 0 = ϕ 0 A 1 .
F 1 1 = A 1 A d A C A 1 .
M = ( ρ 1 F 1 1 ρ 2 F 1 2 ρ 1 F 2 1 ρ 2 F 2 2 ) .
F 1 _ 2 = A C A 1 ,
F 2 _ 1 = A C A 2 ,
H 1 = 1 ( 1 ρ ( 1 2 A C A ) ) H 01 ,
H 2 = ρ A C A ( 1 ρ ( 1 2 A C A ) ) 2 H 01 ,
ϕ D i = ρ i H i A d ,
ϕ 0 = ϕ D 2 2 ϕ D 2 ,
ϕ = 1 S g ( λ ) d λ = C S .
ϕ 0 = ( ϕ D 1 ϕ D 2 ) 2 · ϕ D 2 = η 2 ϕ D 2 .
η 2 ϕ D 2 = ( 1 α ρ 2 1 α ρ 1 ) · ( ρ 1 ρ 2 ) ϕ 0 ,
κ = ϕ D 11 ϕ D 12 = ( 1 α ρ 2 1 α ρ 1 ) · ( ρ 1 ρ 2 ) .
ϕ 0 = η 2 ϕ D κ .
γ = ϕ D 11 ϕ D 1 = 1 ( ρ β 1 ρ α ) 2 .
H = ( I M ) 1 H 0 .
M = ( ρ 1 α ρ 2 β ρ 1 β ρ 2 α ) ,
α = A A d A C A ,
β = A C A .
( I M ) 1 = 1 ( 1 ρ 1 α ) ( 1 ρ 2 α ) ρ 1 ρ 2 β 2 ( 1 ρ 2 α ρ 2 β ρ 1 β 1 ρ 1 α ) .
H 0 = ( H 01 0 ) .
( H 1 H 2 ) = 1 ( 1 ρ 1 α ) ( 1 ρ 2 α ) ρ 1 ρ 2 β 2 ( 1 ρ 2 α ρ 2 β ρ 1 β 1 ρ 1 α ) ( H 01 0 ) , H 1 = 1 ρ 2 α ( 1 ρ 1 α ) ( 1 ρ 2 α ) ρ 1 ρ 2 β 2 H 01 ,
H 2 = ρ 1 β ( 1 ρ 1 α ) ( 1 ρ 2 α ) ρ 1 ρ 2 β 2 H 01 .
H 1 = 1 ( 1 ρ 1 α ) H 01 ,
H 2 = ρ 1 β ( 1 ρ 1 α ) ( 1 ρ 2 α ) H 01 .
H 0 = ( ϕ 0 A 0 ) .
ϕ D i = ρ i H i A d .
ϕ D 1 = ρ 1 β ( 1 ρ 1 α ) ϕ 0 , ϕ D 2 = ρ 1 ρ 2 β 2 ( 1 ρ 1 α ) ( 1 ρ 2 α ) ϕ 0 .
ϕ D 1 ϕ D 2 = 1 ρ 2 α ρ 2 β ,
ϕ D 1 2 ϕ D 2 = ( 1 ρ 2 α 1 ρ 1 α ) · ( ρ 1 ρ 2 ) ϕ 0 .
ϕ D 1 2 ϕ D 2 = ϕ 0 .

Metrics