Abstract

We have applied the frequency-domain technique to measurement of the optical properties of turbid media with strong absorption in the infinite medium limit. Absorption coefficients up to 2.3cm1 for a modified scattering coefficient of 4.3cm1 are studied, which corresponds to a reduced scattering albedo of 0.65. Low phase noise and good phase stability are required for these low albedo conditions. As the degree of absorption increases, the phase changes are reduced while amplitude changes increase. For this reason, correction of amplitude-phase cross talk is essential to achieve accurate measurements with strong absorption. Careful control of stray reflections is required to properly measure amplitude-phase cross talk. Because the diffusion approximation becomes less accurate, measurements are compared to calculations performed in the PN approximation, which is essentially an exact solution for the infinite medium limit. Agreement between theory and experiment is only obtained when correction for amplitude-phase cross talk is performed. These measurements can provide a good method for testing amplitude-phase cross talk.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457-3481(1998).
    [CrossRef]
  2. S. Fantini and M. A. Franceschini, “Frequency-domain techniques for tissue spectroscopy and imaging,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 405-453.
  3. A. E. Cerussi and B. J. Tromberg, “Photon migration spectroscopy frequency-domain techniques,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 22-21-22-17.
  4. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18, 584-599 (2001).
    [CrossRef]
  5. C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43, 4677-4684 (2004).
    [CrossRef] [PubMed]
  6. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
    [CrossRef] [PubMed]
  7. S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632-647 (2004).
    [CrossRef] [PubMed]
  8. D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
    [CrossRef] [PubMed]
  9. T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541-2549 (1997).
    [CrossRef]
  10. I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation for semi-infinite turbid media,” Med. Phys. 35, 681-693 (2008).
    [CrossRef] [PubMed]
  11. L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
    [CrossRef]
  12. A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, “Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media,” Appl. Opt. 39, 1659-1667 (2000).
    [CrossRef]
  13. J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the delta-P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E 72, 021903 (2005).
    [CrossRef]
  14. D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
    [CrossRef]
  15. H. P. Xu and M. S. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express 14, 6485-6501 (2006).
    [CrossRef] [PubMed]
  16. W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” Vol. IS 5 of SPIE Institute Series (SPIE, 1989), pp. 146-154.
  17. D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
    [CrossRef] [PubMed]
  18. D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol. 46, 2359-2370 (2001).
    [CrossRef] [PubMed]
  19. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16, 1066-1071 (1999).
    [CrossRef]
  20. K. Mitra and S. Kumar, “Development and comparison of models for light-pulse transport through scattering-absorbing media,” Appl. Opt. 38, 188-196 (1999).
    [CrossRef]
  21. G. W. Faris, “P(N) approximation for frequency-domain measurements in scattering media,” Appl. Opt. 44, 2058-2071(2005).
    [CrossRef] [PubMed]
  22. T. Khan and A. Thomas, “Comparison of P-N or spherical harmonics approximation for scattering media with spatially varying and spatially constant refractive indices,” Opt. Commun. 255, 130-166 (2005).
    [CrossRef]
  23. M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, “Time-dependent simplified P-N approximation to the equations of radiative transfer,” J. Comput. Phys. 226, 2289-2305(2007).
    [CrossRef]
  24. S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the P-N approximations,” Meas. Sci. Technol. 18, 79-86 (2007).
    [CrossRef]
  25. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935-2945 (1999).
    [CrossRef]
  26. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939-4950 (1999).
    [CrossRef]
  27. M. Gerken and G. W. Faris, “High-precision frequency-domain measurements of the optical properties of turbid media,” Opt. Lett. 24, 930-932 (1999).
    [CrossRef]
  28. M. Gerken and G. W. Faris, “Frequency-domain immersion technique for accurate optical property measurements of turbid media,” Opt. Lett. 24, 1726-1728 (1999).
    [CrossRef]
  29. Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383-393 (2002).
    [CrossRef]
  30. S. Yokoyama, A. Okamoto, T. Araki, and N. Suzuki, “Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light,” Rev. Sci. Instrum. 66, 5331-5336 (1995).
    [CrossRef]
  31. N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum. 69, 3042-3054 (1998).
    [CrossRef]
  32. K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum. 71, 2191-2195 (2000).
    [CrossRef]
  33. S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum. 72, 1984-1987 (2001).
    [CrossRef]
  34. I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, “Instrumentation for the accurate measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 73, 3306-3312 (2002).
    [CrossRef]
  35. M. Gerken and G. W. Faris, “High-accuracy optical-property measurements using a frequency domain technique,” Proc. SPIE 3597, 593-600 (1999).
    [CrossRef]
  36. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  37. L. D. Lilge and B. C. Wilson, “Accuracy of interstitial measurements of absolute light fluence rate in the determination of tissue optical properties,” Proc. SPIE 1882, 291-304(1993).
    [CrossRef]
  38. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: A light-emitting-diode based technique,” Appl. Opt. 33, 5204-5213 (1994).
    [CrossRef] [PubMed]

2008

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation for semi-infinite turbid media,” Med. Phys. 35, 681-693 (2008).
[CrossRef] [PubMed]

2007

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, “Time-dependent simplified P-N approximation to the equations of radiative transfer,” J. Comput. Phys. 226, 2289-2305(2007).
[CrossRef]

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the P-N approximations,” Meas. Sci. Technol. 18, 79-86 (2007).
[CrossRef]

2006

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[CrossRef] [PubMed]

H. P. Xu and M. S. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express 14, 6485-6501 (2006).
[CrossRef] [PubMed]

2005

G. W. Faris, “P(N) approximation for frequency-domain measurements in scattering media,” Appl. Opt. 44, 2058-2071(2005).
[CrossRef] [PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the delta-P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E 72, 021903 (2005).
[CrossRef]

T. Khan and A. Thomas, “Comparison of P-N or spherical harmonics approximation for scattering media with spatially varying and spatially constant refractive indices,” Opt. Commun. 255, 130-166 (2005).
[CrossRef]

2004

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632-647 (2004).
[CrossRef] [PubMed]

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43, 4677-4684 (2004).
[CrossRef] [PubMed]

2003

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

2002

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383-393 (2002).
[CrossRef]

I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, “Instrumentation for the accurate measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 73, 3306-3312 (2002).
[CrossRef]

2001

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum. 72, 1984-1987 (2001).
[CrossRef]

E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18, 584-599 (2001).
[CrossRef]

D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol. 46, 2359-2370 (2001).
[CrossRef] [PubMed]

2000

1999

1998

D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
[CrossRef] [PubMed]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457-3481(1998).
[CrossRef]

1997

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541-2549 (1997).
[CrossRef]

1995

D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
[CrossRef]

S. Yokoyama, A. Okamoto, T. Araki, and N. Suzuki, “Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light,” Rev. Sci. Instrum. 66, 5331-5336 (1995).
[CrossRef]

1994

1993

L. D. Lilge and B. C. Wilson, “Accuracy of interstitial measurements of absolute light fluence rate in the determination of tissue optical properties,” Proc. SPIE 1882, 291-304(1993).
[CrossRef]

1973

Agrawal, A.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[CrossRef] [PubMed]

Alford, K.

K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum. 71, 2191-2195 (2000).
[CrossRef]

Araki, T.

S. Yokoyama, A. Okamoto, T. Araki, and N. Suzuki, “Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light,” Rev. Sci. Instrum. 66, 5331-5336 (1995).
[CrossRef]

Aronson, R.

Arridge, S. R.

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the P-N approximations,” Meas. Sci. Technol. 18, 79-86 (2007).
[CrossRef]

Barajas, O.

D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
[CrossRef] [PubMed]

Barbieri, B.

Bennett, C. L.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Berger, A. J.

Bevilacqua, F.

Boas, D. A.

D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
[CrossRef]

Brown, K.

D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
[CrossRef] [PubMed]

Carp, S. A.

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632-647 (2004).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi and B. J. Tromberg, “Photon migration spectroscopy frequency-domain techniques,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 22-21-22-17.

Chance, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457-3481(1998).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
[CrossRef]

Chin, L. C. L.

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Cope, M.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457-3481(1998).
[CrossRef]

Corngold, N.

Depeursinge, C.

Dickey, D.

D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
[CrossRef] [PubMed]

Dickey, D. J.

D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol. 46, 2359-2370 (2001).
[CrossRef] [PubMed]

Du, C.

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

Durkin, A. J.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, “Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media,” Appl. Opt. 39, 1659-1667 (2000).
[CrossRef]

Ediger, M. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Fallstrom, K.

I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, “Instrumentation for the accurate measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 73, 3306-3312 (2002).
[CrossRef]

Fantini, S.

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: A light-emitting-diode based technique,” Appl. Opt. 33, 5204-5213 (1994).
[CrossRef] [PubMed]

S. Fantini and M. A. Franceschini, “Frequency-domain techniques for tissue spectroscopy and imaging,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 405-453.

Faris, G. W.

Fishkin, J. B.

Foster, T. H.

Franceschini, M. A.

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: A light-emitting-diode based technique,” Appl. Opt. 33, 5204-5213 (1994).
[CrossRef] [PubMed]

S. Fantini and M. A. Franceschini, “Frequency-domain techniques for tissue spectroscopy and imaging,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 405-453.

Frank, M.

M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, “Time-dependent simplified P-N approximation to the equations of radiative transfer,” J. Comput. Phys. 226, 2289-2305(2007).
[CrossRef]

Gall, J. A.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Gerken, M.

Gratton, E.

Gross, J. D.

Hale, G. M.

Hayakawa, C. K.

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation for semi-infinite turbid media,” Med. Phys. 35, 681-693 (2008).
[CrossRef] [PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the delta-P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E 72, 021903 (2005).
[CrossRef]

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43, 4677-4684 (2004).
[CrossRef] [PubMed]

Hill, B. Y.

Huang, Y. Q.

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383-393 (2002).
[CrossRef]

Hull, E. L.

Katila, T.

I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, “Instrumentation for the accurate measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 73, 3306-3312 (2002).
[CrossRef]

Khan, T.

T. Khan and A. Thomas, “Comparison of P-N or spherical harmonics approximation for scattering media with spatially varying and spatially constant refractive indices,” Opt. Commun. 255, 130-166 (2005).
[CrossRef]

Klar, A.

M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, “Time-dependent simplified P-N approximation to the equations of radiative transfer,” J. Comput. Phys. 226, 2289-2305(2007).
[CrossRef]

Kotilahti, K.

I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, “Instrumentation for the accurate measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 73, 3306-3312 (2002).
[CrossRef]

Kumar, S.

Larsen, E. W.

M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, “Time-dependent simplified P-N approximation to the equations of radiative transfer,” J. Comput. Phys. 226, 2289-2305(2007).
[CrossRef]

Lilge, L. D.

L. D. Lilge and B. C. Wilson, “Accuracy of interstitial measurements of absolute light fluence rate in the determination of tissue optical properties,” Proc. SPIE 1882, 291-304(1993).
[CrossRef]

Liu, H.

D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
[CrossRef]

Ma, H. Y.

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

Marquet, P.

Matchette, L. S.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Mitra, K.

Moore, R. B.

D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol. 46, 2359-2370 (2001).
[CrossRef] [PubMed]

D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
[CrossRef] [PubMed]

Morgan, S. P.

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum. 72, 1984-1987 (2001).
[CrossRef]

Nakai, T.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541-2549 (1997).
[CrossRef]

Nishimura, G.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541-2549 (1997).
[CrossRef]

Nissila, I.

I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, “Instrumentation for the accurate measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 73, 3306-3312 (2002).
[CrossRef]

Okamoto, A.

S. Yokoyama, A. Okamoto, T. Araki, and N. Suzuki, “Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light,” Rev. Sci. Instrum. 66, 5331-5336 (1995).
[CrossRef]

O'Leary, M. A.

D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
[CrossRef]

Patterson, M. S.

Pfefer, T. J.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Pham, T.

Piguet, D.

Prahl, S. A.

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632-647 (2004).
[CrossRef] [PubMed]

Querry, M. R.

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457-3481(1998).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

Rayner, D. C.

D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol. 46, 2359-2370 (2001).
[CrossRef] [PubMed]

Schweiger, M.

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the P-N approximations,” Meas. Sci. Technol. 18, 79-86 (2007).
[CrossRef]

Seo, I.

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation for semi-infinite turbid media,” Med. Phys. 35, 681-693 (2008).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383-393 (2002).
[CrossRef]

Sharma, D.

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[CrossRef] [PubMed]

Spanier, J.

Star, W. M.

W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” Vol. IS 5 of SPIE Institute Series (SPIE, 1989), pp. 146-154.

Sun, Z. G.

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383-393 (2002).
[CrossRef]

Suzuki, N.

S. Yokoyama, A. Okamoto, T. Araki, and N. Suzuki, “Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light,” Rev. Sci. Instrum. 66, 5331-5336 (1995).
[CrossRef]

Tamura, M.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541-2549 (1997).
[CrossRef]

Thomas, A.

T. Khan and A. Thomas, “Comparison of P-N or spherical harmonics approximation for scattering media with spatially varying and spatially constant refractive indices,” Opt. Commun. 255, 130-166 (2005).
[CrossRef]

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457-3481(1998).
[CrossRef]

Tromberg, B. J.

Tulip, J.

D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol. 46, 2359-2370 (2001).
[CrossRef] [PubMed]

D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
[CrossRef] [PubMed]

Venugopalan, V.

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation for semi-infinite turbid media,” Med. Phys. 35, 681-693 (2008).
[CrossRef] [PubMed]

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the delta-P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E 72, 021903 (2005).
[CrossRef]

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632-647 (2004).
[CrossRef] [PubMed]

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43, 4677-4684 (2004).
[CrossRef] [PubMed]

A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, “Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media,” Appl. Opt. 39, 1659-1667 (2000).
[CrossRef]

Vitkin, I. A.

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Whelan, W. M.

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Wickramasinghe, Y.

K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum. 71, 2191-2195 (2000).
[CrossRef]

Wilke, J. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

Wilson, B. C.

L. D. Lilge and B. C. Wilson, “Accuracy of interstitial measurements of absolute light fluence rate in the determination of tissue optical properties,” Proc. SPIE 1882, 291-304(1993).
[CrossRef]

Worthington, A. E.

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

Wright, S.

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the P-N approximations,” Meas. Sci. Technol. 18, 79-86 (2007).
[CrossRef]

Xu, H. P.

Yamamoto, K.

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541-2549 (1997).
[CrossRef]

Yasuda, S.

M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, “Time-dependent simplified P-N approximation to the equations of radiative transfer,” J. Comput. Phys. 226, 2289-2305(2007).
[CrossRef]

Yodh, A. G.

D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
[CrossRef]

Yokoyama, S.

S. Yokoyama, A. Okamoto, T. Araki, and N. Suzuki, “Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light,” Rev. Sci. Instrum. 66, 5331-5336 (1995).
[CrossRef]

Yong, K. Y.

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum. 72, 1984-1987 (2001).
[CrossRef]

You, J. S.

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the delta-P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E 72, 021903 (2005).
[CrossRef]

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43, 4677-4684 (2004).
[CrossRef] [PubMed]

Appl. Opt.

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: A light-emitting-diode based technique,” Appl. Opt. 33, 5204-5213 (1994).
[CrossRef] [PubMed]

K. Mitra and S. Kumar, “Development and comparison of models for light-pulse transport through scattering-absorbing media,” Appl. Opt. 38, 188-196 (1999).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939-4950 (1999).
[CrossRef]

A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, “Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media,” Appl. Opt. 39, 1659-1667 (2000).
[CrossRef]

G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
[CrossRef] [PubMed]

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, “Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media,” Appl. Opt. 43, 4677-4684 (2004).
[CrossRef] [PubMed]

G. W. Faris, “P(N) approximation for frequency-domain measurements in scattering media,” Appl. Opt. 44, 2058-2071(2005).
[CrossRef] [PubMed]

Biomed. Eng. Online

D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online 5, 49 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt. 12, 064027 (2007).
[CrossRef]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P1 approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632-647 (2004).
[CrossRef] [PubMed]

J. Comput. Phys.

M. Frank, A. Klar, E. W. Larsen, and S. Yasuda, “Time-dependent simplified P-N approximation to the equations of radiative transfer,” J. Comput. Phys. 226, 2289-2305(2007).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

S. Wright, M. Schweiger, and S. R. Arridge, “Reconstruction in optical tomography using the P-N approximations,” Meas. Sci. Technol. 18, 79-86 (2007).
[CrossRef]

Med. Phys.

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P-1 approximation for semi-infinite turbid media,” Med. Phys. 35, 681-693 (2008).
[CrossRef] [PubMed]

Opt. Commun.

T. Khan and A. Thomas, “Comparison of P-N or spherical harmonics approximation for scattering media with spatially varying and spatially constant refractive indices,” Opt. Commun. 255, 130-166 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol. 43, 3559-3570 (1998).
[CrossRef] [PubMed]

D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol. 46, 2359-2370 (2001).
[CrossRef] [PubMed]

T. Nakai, G. Nishimura, K. Yamamoto, and M. Tamura, “Expression of optical diffusion coefficient in high-absorption turbid media,” Phys. Med. Biol. 42, 2541-2549 (1997).
[CrossRef]

Phys. Rev. E

J. S. You, C. K. Hayakawa, and V. Venugopalan, “Frequency domain photon migration in the delta-P1 approximation: analysis of ballistic, transport, and diffuse regimes,” Phys. Rev. E 72, 021903 (2005).
[CrossRef]

Proc. SPIE

D. A. Boas, H. Liu, M. A. O'Leary, B. Chance, and A. G. Yodh, “Photon migration within the P3 approximation,” Proc. SPIE 2389, 240-247 (1995).
[CrossRef]

L. D. Lilge and B. C. Wilson, “Accuracy of interstitial measurements of absolute light fluence rate in the determination of tissue optical properties,” Proc. SPIE 1882, 291-304(1993).
[CrossRef]

M. Gerken and G. W. Faris, “High-accuracy optical-property measurements using a frequency domain technique,” Proc. SPIE 3597, 593-600 (1999).
[CrossRef]

Rev. Sci. Instrum.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457-3481(1998).
[CrossRef]

Z. G. Sun, Y. Q. Huang, and E. M. Sevick-Muraca, “Precise analysis of frequency domain photon migration measurement for characterization of concentrated colloidal suspensions,” Rev. Sci. Instrum. 73, 383-393 (2002).
[CrossRef]

S. Yokoyama, A. Okamoto, T. Araki, and N. Suzuki, “Examination to eliminate undesirable phase delay of an avalanche photodiode (APD) for intensity-modulated light,” Rev. Sci. Instrum. 66, 5331-5336 (1995).
[CrossRef]

N. Ramanujam, C. Du, H. Y. Ma, and B. Chance, “Sources of phase noise in homodyne and heterodyne phase modulation devices used for tissue oximetry studies,” Rev. Sci. Instrum. 69, 3042-3054 (1998).
[CrossRef]

K. Alford and Y. Wickramasinghe, “Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy,” Rev. Sci. Instrum. 71, 2191-2195 (2000).
[CrossRef]

S. P. Morgan and K. Y. Yong, “Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy,” Rev. Sci. Instrum. 72, 1984-1987 (2001).
[CrossRef]

I. Nissila, K. Kotilahti, K. Fallstrom, and T. Katila, “Instrumentation for the accurate measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum. 73, 3306-3312 (2002).
[CrossRef]

Other

S. Fantini and M. A. Franceschini, “Frequency-domain techniques for tissue spectroscopy and imaging,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 405-453.

A. E. Cerussi and B. J. Tromberg, “Photon migration spectroscopy frequency-domain techniques,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 22-21-22-17.

W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” Vol. IS 5 of SPIE Institute Series (SPIE, 1989), pp. 146-154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental arrangement for frequency domain measurements in the infinite medium geometry.

Fig. 2
Fig. 2

Optical arrangement to measure the amplitude-phase cross talk.

Fig. 3
Fig. 3

Experimental measurements of amplitude-phase cross talk.

Fig. 4
Fig. 4

Measurements of amplitude and phase variation with distance for μ a = 0.004 cm 1 .

Fig. 5
Fig. 5

Measurements of amplitude and phase variation with distance for μ a = 2.3 cm 1 .

Fig. 6
Fig. 6

Experimental and theoretical variation of κ r and κ i as a function of the absorption coefficient. All values are normalized to μ s . The theoretical curves are valid for a single value of ω / v μ s corresponding to our experiment.

Fig. 7
Fig. 7

Data from Fig. 6 replotted for larger values of μ a / μ s and with normalization of κ r and κ i to the ballistic limit values of Table 1 rather than μ s . Theoretical curves are specific to the values for ω / v , μ a , and μ s for our experiment.

Fig. 8
Fig. 8

Experimental measurements of absorption and reduced scattering coefficients as a function of the calibrated absorption coefficient.

Tables (1)

Tables Icon

Table 1 Analytic Expressions for κ r / κ s and κ i / κ s in the Diffuse and Ballistic Limits

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| χ 0 κ 0 0 . . 0 0 0 κ χ 1 2 κ 0 . . 0 0 0 0 2 κ χ 2 3 κ . . 0 0 0 0 0 3 κ χ 3 . . 0 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 0 . . χ N 2 ( N 1 ) κ 0 0 0 0 0 . . ( N 1 ) κ χ N 1 N κ 0 0 0 0 . . 0 N κ χ N | = 0 ,
χ n ( 2 n + 1 ) ( i ω v + μ a + ( 1 f n ) μ s ) = ( 2 n + 1 ) ( i ω v + μ a + 1 f n 1 g μ s ) .
f l = 4 π P l ( cos θ ) f ( cos θ ) d Ω ,
f n 1 - f n 1 - g .
U = A exp ( κ r + i ω t ) r ,
0.1 °
0.1 °
2.5 cm
κ i Corrected = κ i Measured + d ϕ d ( log U ) d ( log U ) d r = κ i Measured d ϕ d ( log U ) 1 ln ( 10 ) ( κ r + 1 r ) .

Metrics