D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).

[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J Biomed. Opt. 12, 014021 (2007).

[CrossRef]
[PubMed]

B. Wassermann, “Limits of high-order perturbation in time-domain optical mammography,” Phys. Rev. E 74, 031908(2006).

[CrossRef]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

A. D. Kim and J. C. Schotland, “Self-consistent scattering theory for the radiative transport equation,” J. Opt. Soc. Am. A 23, 596-602 (2006).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: I. Theory,” J. Opt. Soc. Am. A 23, 2105-2118 (2006).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: II. Continuous wave results,” J. Opt. Soc. Am. A 23, 2119-2131 (2006).

[CrossRef]

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model of light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159-2166 (2005).

[CrossRef]
[PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).

[PubMed]

K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain,” Opt. Lett. 29, 578-580 (2004).

[CrossRef]
[PubMed]

M. Xu, W. Cai, and R. R. Alfano, “Multiple passages of light through an absorption inhomogeneity in optical imaging of turbid media,” Opt. Lett. 29, 1757-1759(2004).

[CrossRef]
[PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, “Experimental tests of a perturbation model for time-resolved imaging of diffusive media,” Appl. Opt. 42, 3145-3153 (2003).

[CrossRef]
[PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered random media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).

[CrossRef]

J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, “Recovery of optical parameters in multiple-layered diffusive media: theory and experiments,” J. Opt. Soc. Am. A 18, 821-830 (2001).

[CrossRef]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40, 4622-4632 (2001).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. 18, 3018-3036 (2001).

[CrossRef]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

S. A. Walker, D. A. Boas, and E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935-1944 (1998).

[CrossRef]

A. Kienle, T. Glanzmann, G. Wagnieres, and H. V. Bergh, “Investigation of two-layered turbid medium with time-resolved reflectance,” Appl. Opt. 37, 6852-6862 (1998).

[CrossRef]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75-92 (1997).

[CrossRef]
[PubMed]

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404-413(1997).

[CrossRef]
[PubMed]

M. R. Ostermeyer and S. L. Jacques, “Perturbation theory for diffuse light transport in complex biological tissues,” J. Opt. Soc. Am. A 14, 255-261 (1997).

[CrossRef]

Y. Yao, Y. wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325-342 (1997).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253-266 (1996).

[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887-4891(1994).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).

[CrossRef]
[PubMed]

P. N. den Outer, Th. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10, 1209-1218 (1993).

[CrossRef]

R. Graaf, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426-434 (1993).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes*, 2nd ed. (Cambridge U. Press, 1992).

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlength in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560(1992).

[CrossRef]
[PubMed]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).

[CrossRef]
[PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlength in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560(1992).

[CrossRef]
[PubMed]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. 18, 3018-3036 (2001).

[CrossRef]

Y. Yao, Y. wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325-342 (1997).

[CrossRef]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159-170 (2002).

[PubMed]

S. A. Walker, D. A. Boas, and E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935-1944 (1998).

[CrossRef]

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404-413(1997).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75-92 (1997).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887-4891(1994).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75-92 (1997).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887-4891(1994).

[CrossRef]
[PubMed]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J Biomed. Opt. 12, 014021 (2007).

[CrossRef]
[PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlength in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560(1992).

[CrossRef]
[PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J Biomed. Opt. 12, 014021 (2007).

[CrossRef]
[PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, “Experimental tests of a perturbation model for time-resolved imaging of diffusive media,” Appl. Opt. 42, 3145-3153 (2003).

[CrossRef]
[PubMed]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159-170 (2002).

[PubMed]

J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, “Recovery of optical parameters in multiple-layered diffusive media: theory and experiments,” J. Opt. Soc. Am. A 18, 821-830 (2001).

[CrossRef]

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model of light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159-2166 (2005).

[CrossRef]
[PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered random media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).

[CrossRef]
[PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlength in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560(1992).

[CrossRef]
[PubMed]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: I. Theory,” J. Opt. Soc. Am. A 23, 2105-2118 (2006).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: II. Continuous wave results,” J. Opt. Soc. Am. A 23, 2119-2131 (2006).

[CrossRef]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).

[PubMed]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes*, 2nd ed. (Cambridge U. Press, 1992).

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. 18, 3018-3036 (2001).

[CrossRef]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).

[CrossRef]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).

[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).

[CrossRef]
[PubMed]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253-266 (1996).

[CrossRef]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).

[CrossRef]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).

[PubMed]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: I. Theory,” J. Opt. Soc. Am. A 23, 2105-2118 (2006).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: II. Continuous wave results,” J. Opt. Soc. Am. A 23, 2119-2131 (2006).

[CrossRef]

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model of light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159-2166 (2005).

[CrossRef]
[PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered random media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).

[CrossRef]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40, 4622-4632 (2001).

[CrossRef]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75-92 (1997).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887-4891(1994).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253-266 (1996).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253-266 (1996).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253-266 (1996).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. 18, 3018-3036 (2001).

[CrossRef]

Y. Yao, Y. wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325-342 (1997).

[CrossRef]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).

[PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J Biomed. Opt. 12, 014021 (2007).

[CrossRef]
[PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, “Experimental tests of a perturbation model for time-resolved imaging of diffusive media,” Appl. Opt. 42, 3145-3153 (2003).

[CrossRef]
[PubMed]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253-266 (1996).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes*, 2nd ed. (Cambridge U. Press, 1992).

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).

[CrossRef]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, “Recovery of optical parameters in multiple-layered diffusive media: theory and experiments,” J. Opt. Soc. Am. A 18, 821-830 (2001).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: II. Continuous wave results,” J. Opt. Soc. Am. A 23, 2119-2131 (2006).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: I. Theory,” J. Opt. Soc. Am. A 23, 2105-2118 (2006).

[CrossRef]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).

[PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered random media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).

[CrossRef]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. 18, 3018-3036 (2001).

[CrossRef]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).

[CrossRef]
[PubMed]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J Biomed. Opt. 12, 014021 (2007).

[CrossRef]
[PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, “Experimental tests of a perturbation model for time-resolved imaging of diffusive media,” Appl. Opt. 42, 3145-3153 (2003).

[CrossRef]
[PubMed]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes*, 2nd ed. (Cambridge U. Press, 1992).

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J Biomed. Opt. 12, 014021 (2007).

[CrossRef]
[PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, “Experimental tests of a perturbation model for time-resolved imaging of diffusive media,” Appl. Opt. 42, 3145-3153 (2003).

[CrossRef]
[PubMed]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes*, 2nd ed. (Cambridge U. Press, 1992).

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

B. Wassermann, “Limits of high-order perturbation in time-domain optical mammography,” Phys. Rev. E 74, 031908(2006).

[CrossRef]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered random media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).

[CrossRef]

J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, “Recovery of optical parameters in multiple-layered diffusive media: theory and experiments,” J. Opt. Soc. Am. A 18, 821-830 (2001).

[CrossRef]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75-92 (1997).

[CrossRef]
[PubMed]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887-4891(1994).

[CrossRef]
[PubMed]

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model of light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159-2166 (2005).

[CrossRef]
[PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered random media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).

[CrossRef]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40, 4622-4632 (2001).

[CrossRef]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031-2041 (1991).

[CrossRef]
[PubMed]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. 18, 3018-3036 (2001).

[CrossRef]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031-2041 (1991).

[CrossRef]
[PubMed]

R. Graaf, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426-434 (1993).

[CrossRef]

A. Kienle, T. Glanzmann, G. Wagnieres, and H. V. Bergh, “Investigation of two-layered turbid medium with time-resolved reflectance,” Appl. Opt. 37, 6852-6862 (1998).

[CrossRef]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal to noise analysis,” Appl. Opt. 36, 75-92 (1997).

[CrossRef]
[PubMed]

S. A. Walker, D. A. Boas, and E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt. 37, 1935-1944 (1998).

[CrossRef]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40, 4622-4632 (2001).

[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, “Experimental tests of a perturbation model for time-resolved imaging of diffusive media,” Appl. Opt. 42, 3145-3153 (2003).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).

[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J Biomed. Opt. 12, 014021 (2007).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253-266 (1996).

[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. 18, 3018-3036 (2001).

[CrossRef]

M. R. Ostermeyer and S. L. Jacques, “Perturbation theory for diffuse light transport in complex biological tissues,” J. Opt. Soc. Am. A 14, 255-261 (1997).

[CrossRef]

Y. Yao, Y. wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325-342 (1997).

[CrossRef]

P. N. den Outer, Th. M. Nieuwenhuizen, and A. Lagendijk, “Location of objects in multiple-scattering media,” J. Opt. Soc. Am. A 10, 1209-1218 (1993).

[CrossRef]

A. D. Kim and J. C. Schotland, “Self-consistent scattering theory for the radiative transport equation,” J. Opt. Soc. Am. A 23, 596-602 (2006).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: I. Theory,” J. Opt. Soc. Am. A 23, 2105-2118 (2006).

[CrossRef]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function: II. Continuous wave results,” J. Opt. Soc. Am. A 23, 2119-2131 (2006).

[CrossRef]

J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, “Recovery of optical parameters in multiple-layered diffusive media: theory and experiments,” J. Opt. Soc. Am. A 18, 821-830 (2001).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).

[CrossRef]
[PubMed]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951-953 (2000).

[CrossRef]

K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain,” Opt. Lett. 29, 578-580 (2004).

[CrossRef]
[PubMed]

M. Xu, W. Cai, and R. R. Alfano, “Multiple passages of light through an absorption inhomogeneity in optical imaging of turbid media,” Opt. Lett. 29, 1757-1759(2004).

[CrossRef]
[PubMed]

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model of light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159-2166 (2005).

[CrossRef]
[PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlength in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531-1560(1992).

[CrossRef]
[PubMed]

J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, A. R. Arridge, and J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51, 497-516 (2006).

[CrossRef]
[PubMed]

F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti, “Solution of the time-dependent diffusion equation for layered random media by the eigenfunction method,” Phys. Rev. E 67, 056623 (2003).

[CrossRef]

B. Wassermann, “Limits of high-order perturbation in time-domain optical mammography,” Phys. Rev. E 74, 031908(2006).

[CrossRef]

D. Grosenick, A. Kummrow, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Evaluation of higher-order time domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms,” Phys. Rev. E 76, 061908 (2007).

[CrossRef]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887-4891(1994).

[CrossRef]
[PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat. 4, 471-482 (2005).

[PubMed]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, *Numerical Recipes*, 2nd ed. (Cambridge U. Press, 1992).