Abstract

The goal of the current study was to introduce a mathematical method to derive hemoglobin, oxyhemoglobin and carboxyl-hemoglobin absorption factors from full spectrum reflectometry measurements of retinal microcapillaries. The mathematical equation that describes the spectral reflectometry function was expressed as a linear combination of several terms of Si(λ) representing the spectral signature functions of hemoglobin, oxyhemoglobin, carboxyl-hemoglobin, ocular media, melanin, and a scattering factor. Contrary to the classical model, where the reflectometry function was expressed as an absorbance Ab(λ)=log(incident light(λ)/reflected light(λ)), in this model and system, it is proposed to express the reflectometry function from the eye structures as an absorption factor A(λ)%=incident light(λ)/reflected light(λ). To increase confidence in the estimation of hemoglobin derivatives, the mathematical model was applied to only a part of the spectral function of reflectometry, while the results of the model were used to explain the other part of the reflectometry function. The results demonstrate that for the visible spectral field, the model that explains the absorption of the light by the blood contained in the microcapillaries of biological structures is not compatible with the Beer–Lambert law.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Hickham, R. Frayser, and J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375-85 (1963).
  2. R. A. Laing, L. A. Danisch, and L. R. Young, “The choroidal eye oximeter: an instrument for measuring oxygen saturation of choroidal blood in vivo,” IEEE Trans. Biomed. Eng. BME-22, 183-95 (1975).
    [CrossRef]
  3. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061-1076 (1989).
    [CrossRef] [PubMed]
  4. D. Schweitzer, L. Leistritz, M. Hammer, and M. Scibor, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210-218 (1995)
    [CrossRef]
  5. D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23347-53 (2001).
    [CrossRef]
  6. J. Foubert and V. Diaconu, “On-line and real-time spectroreflectometry measurement of oxygenation in a patient's eye,” U.S. patent 5,919,132 (6 July 1999).
  7. J. Faubert, V. Diaconu, M. Ptito, and A. Ptito, “Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye,” Vision Res. 39, 149-157 (1999).
    [CrossRef] [PubMed]
  8. D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313-320 (1986).
    [CrossRef] [PubMed]
  9. M. Hammer, E. Thamm, and D. Schweitzer, “A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering,” Phys. Med. Biol. 47, N233-N238 (2002).
    [CrossRef] [PubMed]
  10. R. N. Pittman and B. R. Duling, “Measurement of percent oxyhemoglobin in the microvasculature,” J. Appl. Physiol. 38, 321-327 (1975).
    [PubMed]
  11. H. J. A. Dartnell, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24-36 (1953).
  12. O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43-48 (1975)
    [CrossRef] [PubMed]
  13. J. Xu, J. Pokorny, and V. Smith, “Optical density of the human lens,” J. Opt. Soc. Am. A 14, 953-960 (1997).
    [CrossRef]
  14. N. P. A. Zagers and D. Van Norren, “Absorption of the eye lens and macular pigment derived from the reflectance of cone photoreceptors,” J. Opt. Soc. Am. A 21, 2257-2268(2004).
    [CrossRef]
  15. F. C. Delori and S. A. Burns, “Fundus reflectance and the measurement of crystalline lens density,” J. Opt. Soc. Am. A 13, 215-226 (1996).
    [CrossRef]
  16. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).
  17. V. P. Gabel, R. Birngruber, and F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Proceedings of XXIII Consilium Ophthalmologicum, Kyoto, K. Shimizu, J. A. Osterhuis eds. (Amsterdam Oxford: Excerpta Medica, 1978), pp. 658-662.
  18. I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
    [CrossRef] [PubMed]
  19. W. J. Geeraets, R. C. Williams, G. Chan, and W. T. Ham, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol. Visual Sci. 1, 340-347 (1962).
  20. S. Suner, “Non-invasive pulse CO-oximetry screening in the emergency department identifies occult carbon monoxide toxicity,” J. Emerg. Med. 34, 441-450.
    [PubMed]
  21. D. Schweitzer, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454-1465 (1999).
    [CrossRef] [PubMed]

2004 (1)

2002 (1)

M. Hammer, E. Thamm, and D. Schweitzer, “A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering,” Phys. Med. Biol. 47, N233-N238 (2002).
[CrossRef] [PubMed]

2001 (1)

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23347-53 (2001).
[CrossRef]

1999 (2)

J. Faubert, V. Diaconu, M. Ptito, and A. Ptito, “Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye,” Vision Res. 39, 149-157 (1999).
[CrossRef] [PubMed]

D. Schweitzer, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454-1465 (1999).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

1995 (1)

D. Schweitzer, L. Leistritz, M. Hammer, and M. Scibor, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210-218 (1995)
[CrossRef]

1989 (1)

1986 (2)

D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313-320 (1986).
[CrossRef] [PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

1982 (1)

I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
[CrossRef] [PubMed]

1978 (1)

V. P. Gabel, R. Birngruber, and F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Proceedings of XXIII Consilium Ophthalmologicum, Kyoto, K. Shimizu, J. A. Osterhuis eds. (Amsterdam Oxford: Excerpta Medica, 1978), pp. 658-662.

1975 (3)

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43-48 (1975)
[CrossRef] [PubMed]

R. N. Pittman and B. R. Duling, “Measurement of percent oxyhemoglobin in the microvasculature,” J. Appl. Physiol. 38, 321-327 (1975).
[PubMed]

R. A. Laing, L. A. Danisch, and L. R. Young, “The choroidal eye oximeter: an instrument for measuring oxygen saturation of choroidal blood in vivo,” IEEE Trans. Biomed. Eng. BME-22, 183-95 (1975).
[CrossRef]

1963 (1)

J. B. Hickham, R. Frayser, and J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375-85 (1963).

1962 (1)

W. J. Geeraets, R. C. Williams, G. Chan, and W. T. Ham, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol. Visual Sci. 1, 340-347 (1962).

1953 (1)

H. J. A. Dartnell, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24-36 (1953).

Basu, P. K.

I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
[CrossRef] [PubMed]

Birngruber, R.

V. P. Gabel, R. Birngruber, and F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Proceedings of XXIII Consilium Ophthalmologicum, Kyoto, K. Shimizu, J. A. Osterhuis eds. (Amsterdam Oxford: Excerpta Medica, 1978), pp. 658-662.

Burns, S. A.

Chan, G.

W. J. Geeraets, R. C. Williams, G. Chan, and W. T. Ham, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol. Visual Sci. 1, 340-347 (1962).

Danisch, L. A.

R. A. Laing, L. A. Danisch, and L. R. Young, “The choroidal eye oximeter: an instrument for measuring oxygen saturation of choroidal blood in vivo,” IEEE Trans. Biomed. Eng. BME-22, 183-95 (1975).
[CrossRef]

Dartnell, H. J. A.

H. J. A. Dartnell, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24-36 (1953).

Delori, F. C.

F. C. Delori and S. A. Burns, “Fundus reflectance and the measurement of crystalline lens density,” J. Opt. Soc. Am. A 13, 215-226 (1996).
[CrossRef]

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061-1076 (1989).
[CrossRef] [PubMed]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

Diaconu, V.

J. Faubert, V. Diaconu, M. Ptito, and A. Ptito, “Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye,” Vision Res. 39, 149-157 (1999).
[CrossRef] [PubMed]

J. Foubert and V. Diaconu, “On-line and real-time spectroreflectometry measurement of oxygenation in a patient's eye,” U.S. patent 5,919,132 (6 July 1999).

Duling, B. R.

R. N. Pittman and B. R. Duling, “Measurement of percent oxyhemoglobin in the microvasculature,” J. Appl. Physiol. 38, 321-327 (1975).
[PubMed]

Faubert, J.

J. Faubert, V. Diaconu, M. Ptito, and A. Ptito, “Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye,” Vision Res. 39, 149-157 (1999).
[CrossRef] [PubMed]

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

Foubert, J.

J. Foubert and V. Diaconu, “On-line and real-time spectroreflectometry measurement of oxygenation in a patient's eye,” U.S. patent 5,919,132 (6 July 1999).

Frayser, R.

J. B. Hickham, R. Frayser, and J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375-85 (1963).

Gabel, V. P.

V. P. Gabel, R. Birngruber, and F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Proceedings of XXIII Consilium Ophthalmologicum, Kyoto, K. Shimizu, J. A. Osterhuis eds. (Amsterdam Oxford: Excerpta Medica, 1978), pp. 658-662.

Geeraets, W. J.

W. J. Geeraets, R. C. Williams, G. Chan, and W. T. Ham, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol. Visual Sci. 1, 340-347 (1962).

Haberman, H. F.

I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
[CrossRef] [PubMed]

Ham, W. T.

W. J. Geeraets, R. C. Williams, G. Chan, and W. T. Ham, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol. Visual Sci. 1, 340-347 (1962).

Hammer, M.

M. Hammer, E. Thamm, and D. Schweitzer, “A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering,” Phys. Med. Biol. 47, N233-N238 (2002).
[CrossRef] [PubMed]

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23347-53 (2001).
[CrossRef]

D. Schweitzer, L. Leistritz, M. Hammer, and M. Scibor, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210-218 (1995)
[CrossRef]

Hickham, J. B.

J. B. Hickham, R. Frayser, and J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375-85 (1963).

Hillenkamp, F.

V. P. Gabel, R. Birngruber, and F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Proceedings of XXIII Consilium Ophthalmologicum, Kyoto, K. Shimizu, J. A. Osterhuis eds. (Amsterdam Oxford: Excerpta Medica, 1978), pp. 658-662.

Kraft, J.

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23347-53 (2001).
[CrossRef]

Kurian, C. J.

I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
[CrossRef] [PubMed]

Laing, R. A.

R. A. Laing, L. A. Danisch, and L. R. Young, “The choroidal eye oximeter: an instrument for measuring oxygen saturation of choroidal blood in vivo,” IEEE Trans. Biomed. Eng. BME-22, 183-95 (1975).
[CrossRef]

Leistritz, L.

D. Schweitzer, L. Leistritz, M. Hammer, and M. Scibor, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210-218 (1995)
[CrossRef]

Menon, I. A.

I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
[CrossRef] [PubMed]

Persad, S.

I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
[CrossRef] [PubMed]

Pflibsen, K. P.

Pittman, R. N.

R. N. Pittman and B. R. Duling, “Measurement of percent oxyhemoglobin in the microvasculature,” J. Appl. Physiol. 38, 321-327 (1975).
[PubMed]

Pokorny, J.

Ptito, M.

J. Faubert, V. Diaconu, M. Ptito, and A. Ptito, “Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye,” Vision Res. 39, 149-157 (1999).
[CrossRef] [PubMed]

Ross, J. C.

J. B. Hickham, R. Frayser, and J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375-85 (1963).

Schweitzer, D.

M. Hammer, E. Thamm, and D. Schweitzer, “A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering,” Phys. Med. Biol. 47, N233-N238 (2002).
[CrossRef] [PubMed]

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23347-53 (2001).
[CrossRef]

D. Schweitzer, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454-1465 (1999).
[CrossRef] [PubMed]

D. Schweitzer, L. Leistritz, M. Hammer, and M. Scibor, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210-218 (1995)
[CrossRef]

Scibor, M.

D. Schweitzer, L. Leistritz, M. Hammer, and M. Scibor, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210-218 (1995)
[CrossRef]

Smith, V.

Suner, S.

S. Suner, “Non-invasive pulse CO-oximetry screening in the emergency department identifies occult carbon monoxide toxicity,” J. Emerg. Med. 34, 441-450.
[PubMed]

Thamm, E.

M. Hammer, E. Thamm, and D. Schweitzer, “A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering,” Phys. Med. Biol. 47, N233-N238 (2002).
[CrossRef] [PubMed]

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23347-53 (2001).
[CrossRef]

Tiemeijer, L. F.

D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313-320 (1986).
[CrossRef] [PubMed]

Van Assendelft, O. W.

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43-48 (1975)
[CrossRef] [PubMed]

Van Norren, D.

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

Williams, R. C.

W. J. Geeraets, R. C. Williams, G. Chan, and W. T. Ham, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol. Visual Sci. 1, 340-347 (1962).

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

Xu, J.

Young, L. R.

R. A. Laing, L. A. Danisch, and L. R. Young, “The choroidal eye oximeter: an instrument for measuring oxygen saturation of choroidal blood in vivo,” IEEE Trans. Biomed. Eng. BME-22, 183-95 (1975).
[CrossRef]

Zagers, N. P. A.

Zijlstra, W. G.

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43-48 (1975)
[CrossRef] [PubMed]

Anal. Biochem. (1)

O. W. Van Assendelft and W. G. Zijlstra, “Extinction coefficients for use in equations for the spectrophotometric analysis of haemoglobin mixtures,” Anal. Biochem. 69, 43-48 (1975)
[CrossRef] [PubMed]

Appl. Opt. (1)

Br. Med. Bull. (1)

H. J. A. Dartnell, “The interpretation of spectral sensitivity curves,” Br. Med. Bull. 9, 24-36 (1953).

Circulation (1)

J. B. Hickham, R. Frayser, and J. C. Ross, “A study of retinal venous blood oxygen saturation in human subjects by photographic means,” Circulation 27, 375-85 (1963).

Exp. Eye Res. (1)

I. A. Menon, S. Persad, H. F. Haberman, C. J. Kurian, and P. K. Basu, “A qualitative study of the melanins from blue end brown human eyes,” Exp. Eye Res. 34, 531-537(1982).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

D. Schweitzer, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454-1465 (1999).
[CrossRef] [PubMed]

R. A. Laing, L. A. Danisch, and L. R. Young, “The choroidal eye oximeter: an instrument for measuring oxygen saturation of choroidal blood in vivo,” IEEE Trans. Biomed. Eng. BME-22, 183-95 (1975).
[CrossRef]

Int. Ophthalmol. (1)

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23347-53 (2001).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (2)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Visual Sci. 27, 145-152 (1986).

W. J. Geeraets, R. C. Williams, G. Chan, and W. T. Ham, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol. Visual Sci. 1, 340-347 (1962).

J. Appl. Physiol. (1)

R. N. Pittman and B. R. Duling, “Measurement of percent oxyhemoglobin in the microvasculature,” J. Appl. Physiol. 38, 321-327 (1975).
[PubMed]

J. Emerg. Med. (1)

S. Suner, “Non-invasive pulse CO-oximetry screening in the emergency department identifies occult carbon monoxide toxicity,” J. Emerg. Med. 34, 441-450.
[PubMed]

J. Opt. Soc. Am. A (3)

Phys. Med. Biol. (1)

M. Hammer, E. Thamm, and D. Schweitzer, “A simple algorithm for in vivo ocular fundus oximetry compensating for non-haemoglobin absorption and scattering,” Phys. Med. Biol. 47, N233-N238 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Schweitzer, L. Leistritz, M. Hammer, and M. Scibor, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210-218 (1995)
[CrossRef]

Vision Res. (2)

J. Faubert, V. Diaconu, M. Ptito, and A. Ptito, “Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye,” Vision Res. 39, 149-157 (1999).
[CrossRef] [PubMed]

D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res. 26, 313-320 (1986).
[CrossRef] [PubMed]

Other (2)

J. Foubert and V. Diaconu, “On-line and real-time spectroreflectometry measurement of oxygenation in a patient's eye,” U.S. patent 5,919,132 (6 July 1999).

V. P. Gabel, R. Birngruber, and F. Hillenkamp, “Visible and near infrared light absorption in pigment epithelium and choroid,” Proceedings of XXIII Consilium Ophthalmologicum, Kyoto, K. Shimizu, J. A. Osterhuis eds. (Amsterdam Oxford: Excerpta Medica, 1978), pp. 658-662.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of a multichannel reflectometry system by means of a FTP camera.

Fig. 2
Fig. 2

Schematic view of the reflectivity of the light from the back of the eye.

Fig. 3
Fig. 3

Spectral reflectivity functions obtained from the optic nerve capillaries (young Caucasian subject). (a) Graphic representation of the model fit predicted by the system of Eqs. (12) applied for the spectral area of 530– 650 nm . (b) Graphic representation for the entire reflectometry function from 400 to 650 nm and the model fit with hemoglobin derivatives and optical medium absorption contribution predicted by the system of Eqs. (12) for the spectral area of 530– 650 nm .

Fig. 4
Fig. 4

Spectral absorption functions for a middle-aged subject (47 year old Caucasian). (a) Graphical representation of the model fit predicted by the system of Eqs. (12) applied for the spectral area of 530– 650 nm . (b) Graphical representation for the entire reflectometry function from 400 to 650 nm and the model fit with hemoglobin derivatives and optical medium absorption contribution predicted by the system of Eqs. (12) for the spectral area of 530– 650 nm . (c) Graphical representation of the oxyhemoglobin concentration and the R 2 corresponding values calculated for the 20 on-line measurements during 20 s with 1 s integrations from the optic nerve capillaries of one subject.

Fig. 5
Fig. 5

Graphic representation of hemoglobin derivatives blood content (%) calculated from 45 reflectometry measurements from the optic nerve capillaries of 15 subjects.

Fig. 6
Fig. 6

Example of the model fit used to explain the reflectometry function from the structures of the optic nerve of the eye expressed in values of absorbance [ log A ( λ ) ] and absorptance [ A ( λ ) ]. (a) Example of the model fit used to explain the reflectometry function from the structures of the optic nerve of the eye expressed in values of absorbance [ log A ( λ ) ]. (b) Example of the model fit used to explain the same function of reflectometry in values of absorptance [ A ( λ ) ]. The reflectometry function was expressed in values of absorptance [ A ( λ ) ].

Fig. 7
Fig. 7

Schematic view of a phantom eye.

Fig. 8
Fig. 8

Reflectometry function obtained from the uniform ( 50 μm ) thickness of blood contained between two calibrated transparent plates on the phantom eye fundus. (a) Results of the model fit when the reflectometry function was expressed in absorbance units. (b) Results of the model fit when the reflectometry function was expressed in absorptance (absorption %) units.

Fig. 9
Fig. 9

Reflectometry function obtained from the zone of the white paper on the phantom eye fundus containing blood. (a) Results of the model fit when the reflectometry function was expressed in absorbance units. (b) Results of the model fit when the reflectometry function was expressed in absorptance (absorption %) units.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I R ( λ ) = I 0 ( λ ) 10 2 Σ D i ( λ ) R ( λ ) C ( Ω ) ,
I R ( λ ) = I 0 ( λ ) 10 2 ( D media ( λ ) + D melanin ( λ ) + D H b ( λ ) + D O H b ( λ ) + D C O H b ( λ ) ) × R ( λ ) C ( Ω ) .
D ( λ ) = ε ( λ ) d c ,
D i ( λ ) = S i ( λ ) m ,
I R ( λ ) = I 0 ( λ ) 10 2 ( S H b ( λ ) m + S OH b ( λ ) m + S COH b ( λ ) m + S media ( λ ) m + S melanin ( λ ) m 5 R ( λ ) C ( Ω ) .
Ab ( λ ) = log ( I 0 ( λ ) / I R ( λ ) ) .
A ( λ ) % = I 0 ( λ ) / I R ( λ ) ,
10 2 ( S ( λ ) m 1 ) = 1 + 2 S ( λ ) m 1 .
A ( λ ) = S H b ( λ ) m 1 + S OH b ( λ ) m 2 + S COH b ( λ ) m 3 + S media ( λ ) m 4 + S melanin ( λ ) m 5 + ( 1 / R ( λ ) m 6 + k .
F 1 ( λ ) = m a ( λ λ a ) n 1 .
F 2 ( λ ) = m b λ n 2 .
F 3 ( λ ) = m c λ + k c .
F ( λ ) = m a ( λ λ a ) n 1 + m b λ n 2 + m c λ + K c = m 4 ( λ λ a ) n + m 5 λ + k .
A ( λ ) = m 1 S H b ( λ ) + m 2 S OH b ( λ ) + m 3 S COH b ( λ ) + m 4 ( λ λ a ) n + m 5 λ + k .
H b % = m 1 / ( m 1 + m 2 + m 3 ) ,
OH b % = m 2 / ( m 1 + m 2 + m 3 ) ,
COH b % = m 3 / ( m 1 + m 2 + m 3 ) .

Metrics