Abstract

The application of a novel photoacoustic imaging instrument based on a Fabry–Perot polymer film sensing interferometer to imaging the small animal brain is described. This approach provides a convenient backward mode sensing configuration that offers the prospect of overcoming the limitations of existing piezoelectric based detection schemes for small animal brain imaging. Noninvasive images of the vasculature in the mouse brain were obtained at different wavelengths between 590 and 889nm, showing that the cerebral vascular anatomy can be visualized with high contrast and spatial resolution to depths up to 3.7mm. It is considered that the instrument has a role to play in characterizing small animal models of human disease and injury processes such as stroke, epilepsy, and traumatic brain injury.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
    [CrossRef] [PubMed]
  2. R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).
    [PubMed]
  3. E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).
    [CrossRef] [PubMed]
  4. L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  5. M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).
  6. S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13-R48 (2004).
    [CrossRef] [PubMed]
  7. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
    [CrossRef] [PubMed]
  8. J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
    [CrossRef]
  9. P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).
  10. H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
    [CrossRef] [PubMed]
  11. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
    [CrossRef] [PubMed]
  12. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
    [CrossRef]
  13. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
    [CrossRef] [PubMed]
  14. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
    [CrossRef] [PubMed]
  15. S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
    [CrossRef] [PubMed]
  16. Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
    [CrossRef] [PubMed]
  17. K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
    [CrossRef] [PubMed]
  18. R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
    [CrossRef] [PubMed]
  19. X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
    [CrossRef] [PubMed]
  20. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
    [CrossRef] [PubMed]
  21. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
    [CrossRef]
  22. E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).
    [CrossRef]
  23. E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
    [CrossRef] [PubMed]
  24. K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
    [CrossRef]
  25. E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).
  26. British Standard BS EN 60825-1, “Safety of laser products. Equipment classification, requirements and user's guide,” 1994.
  27. http://www.medphys.ucl.ac.uk/research/mle/images.htm.
  28. K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).
    [CrossRef]
  29. T. J. Allen and P. C. Beard, “Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31, 3462-3464 (2006).
    [CrossRef] [PubMed]
  30. M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
    [CrossRef]

2008 (7)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
[CrossRef]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).
[CrossRef]

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef] [PubMed]

2007 (7)

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).
[CrossRef]

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef] [PubMed]

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).
[CrossRef] [PubMed]

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

2006 (3)

2005 (1)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (4)

X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

2001 (3)

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).
[PubMed]

P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).

1994 (1)

British Standard BS EN 60825-1, “Safety of laser products. Equipment classification, requirements and user's guide,” 1994.

1991 (1)

M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).

Aguirre, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

Allen, T. J.

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef] [PubMed]

Balaban, R. S.

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).
[PubMed]

Beard, P. C.

E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef] [PubMed]

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

T. J. Allen and P. C. Beard, “Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31, 3462-3464 (2006).
[CrossRef] [PubMed]

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
[CrossRef]

P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).

Bebie, H.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Bodapati, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Bornhop, D. J.

Carney, P.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

Castillo, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

Chen, H.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

Chen, X.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Cheng, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Cherry, S. R.

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

Cope, M.

M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).

Dai, H.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

De La Zerda, A.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Delpy, D. T.

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Elwell, C. E.

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Fang, H.

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef] [PubMed]

Frenz, M.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Gambhir, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Gamelin, J.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef] [PubMed]

Hampshire, V. A.

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).
[PubMed]

Harris, N. G.

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef] [PubMed]

Hillman, E.

E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).
[CrossRef] [PubMed]

Huang, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

Jiang, H.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

Keren, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Khuri-yakub, B.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Kiser, W. L.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Koestli, K.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Ku, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

Lamont, M.

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
[CrossRef]

Lao, Y.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Laufer, J.

E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry Perot polymer film ultrasound sensor for high resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008).
[CrossRef] [PubMed]

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

Laufer, J. G.

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Levi, J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Li, C.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Li, M.-L.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Liu, Z.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Lungu, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Lythgoe, M. F.

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef] [PubMed]

Maslov, K.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).
[CrossRef]

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).
[CrossRef]

Maurudis, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

Miller, K. D.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Oh, J.-T.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Oralkan, O.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, and G. Ku, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Roper, S.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

Sibson, N. R.

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef] [PubMed]

Smith, B.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Song, K. H.

Stein, E. W.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).
[CrossRef]

Stoica, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Te-Jen, M.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Vaithilingam, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Wang, L.

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Wang, L. V.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).
[CrossRef]

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).
[CrossRef]

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef] [PubMed]

K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730-732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Wang, W.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Wang, X.

Weber, H.

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Wegiel, M. A.

Wu, H.-i.

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

Xiang, L.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Xie, X.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Xing, D.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Yang, S.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Yuan, Z.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

Zavaleta, C.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Zhang, E.

Zhang, E. Z.

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

Zhang, H. F.

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).
[CrossRef]

Zhang, Q.

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

Zhou, Q.

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Zhu, Q.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Br. Med. Bull. (1)

M. F. Lythgoe, N. R. Sibson, and N. G. Harris, “Neuroimaging of animal models of brain disease,” Br. Med. Bull. 65, 235-257 (2003).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. Lamont and P. C. Beard, “2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor,” Electron. Lett. 42, 187-189(2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171-179 (2008).
[CrossRef]

ILAR J. (1)

R. S. Balaban and V. A. Hampshire, “Challenges in small animal noninvasive imaging,” ILAR J. 42, 248-263 (2001).
[PubMed]

J Biomed. Opt. (1)

E. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J Biomed. Opt. 12, 051402 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, F. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008).
[CrossRef] [PubMed]

Med. Phys. (1)

S. Yang, D. Xing, Q. Zhou, L. Xiang, and Y. Lao, “Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography,” Med. Phys. 34, 3294-3301 (2007).
[CrossRef] [PubMed]

Mol. Imaging (1)

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic optical molecular imaging of small animals,” Mol. Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. Smith, M. Te-Jen, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. Khuri-yakub, and S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-562(2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Med. Biol. (5)

K. Koestli, M. Frenz, H. Bebie, and H. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863-1872(2001).
[CrossRef]

Q. Zhang, Z. Liu, P. Carney, Z. Yuan, H. Chen, S. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol. 53, 1921-1931 (2008).
[CrossRef] [PubMed]

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R3 (2005).
[CrossRef] [PubMed]

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration,” Phys. Med. Biol. 52, 141-168(2007).
[CrossRef]

Phys. Rev. Lett. (1)

H. Fang, K. Maslov, and L. V. Wang, “Photoacoustic Doppler effect from flowing small light-absorbing particles,” Phys. Rev. Lett. 99, 184501 (2007).
[CrossRef] [PubMed]

Proc. IEEE (1)

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008).
[CrossRef]

Proc. SPIE (3)

E. Z. Zhang, J. Laufer, and P. C. Beard, “Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 643710S (2007).

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy,” Proc. SPIE 6856, 68561J (2008).
[CrossRef]

K. Maslov, H. F. Zhang, and L. V. Wang, “Portable real-time photoacoustic microscopy,” Proc. SPIE 6437, 643727(2007).
[CrossRef]

Other (5)

British Standard BS EN 60825-1, “Safety of laser products. Equipment classification, requirements and user's guide,” 1994.

http://www.medphys.ucl.ac.uk/research/mle/images.htm.

P. C. Beard, “Flow velocity measurements,” UK patent application, WO 03/039364 (2001).

L. Wang and H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).

M. Cope, “The application of near infrared spectroscopy to noninvasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, 1991).

Supplementary Material (3)

» Media 1: MOV (2814 KB)     
» Media 2: MOV (5878 KB)     
» Media 3: MOV (8254 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement. The FP sensor head is placed on the surface of the mouse head over the region indicated on the photograph. Nanosecond excitation laser pulses emitted by a tunable OPO laser system are directed on to the sensor head, and transmitted through it into the underlying tissue thereby exciting acoustic waves. A second laser emitting at 1550 nm provides a focused interrogation laser beam that is raster scanned over the surface of the sensor in order to map the distribution of the photoacoustic waves arriving at the sensor head. From the 2D distribution of the photoacoustic waves, a 3D image is then reconstructed.

Fig. 2
Fig. 2

Photoacoustic image of the vasculature in the mouse brain obtained using an excitation wavelength of 590 nm . Left, schematic of superficial cerebral vascular anatomy: A, superior sagittal sinus; B, transverse sinus; C, inferior cerebral vein. Top right, x y maximum intensity projection (MIP) of 3D photoacoustic image; bottom right, y z MIP.

Fig. 3
Fig. 3

Volume rendered representation of images of the mouse brain vasculature at different viewing angles obtained using an excitation wavelength of 590 nm (Media 1). This image was reconstructed from the data set used to form the MIPs shown in Fig. 2.

Fig. 4
Fig. 4

Photoacoustic image of vasculature in mouse brain obtained using excitation wavelengths of 637 nm and 800 nm simultaneously. (top) x - y maximum intensity projection (MIP) of 3D photoacoustic image and (bottom) y z MIP. A, superior sagittal sinus B, transverse sinus; C—inferior cerebral vein; E, eyes; S, sinus rectus; D, inferior sagittal sinus.

Fig. 5
Fig. 5

Volume rendered representation of images of mouse brain vasculature at different viewing angles obtained using excitation wavelengths of 637 nm and 800 nm simultaneously (Media 2). This image was reconstructed from the data set used to form the MIP images shown in Fig. 4.

Fig. 6
Fig. 6

Photoacoustic image of the vasculature in mouse brain obtained using an excitation wavelength of 889 nm (Media 3). (top) x y maximum intensity projection (MIP), (middle) x z MIP, and (bottom) y z MIP. A, superior sagittal sinus; B, transverse sinus; E, eyes; S, sinus rectus; D, inferior sagittal sinus; D , lateral branching at the distal end of the inferior sagittal sinus.

Metrics