Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography

Not Accessible

Your library or personal account may give you access

Abstract

We present a dual-imaging technique combining laser speckle contrast imaging and spectral-domain Doppler optical coherence tomography to enable quantitative characterization of local cerebral blood flow (CBF) changes in rat cortex in response to drug stimulus (e.g., cocaine) at high spatiotemporal resolutions. To examine the utility of this new technique, animal experiments were performed to study the influences of anesthetic regimes (e.g., isoflurane, α-chloralose) on the pharmadynamic effects of acute cocaine challenge. The results showed that cocaine-evoked CBF patterns (e.g., increases in α-chloralose and decreases in isoflurane regimes) were quantitatively characterized, thus rendering it a potentially useful tool for imaging studies of brain functions.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical coherence Doppler tomography for quantitative cerebral blood flow imaging

Jiang You, Congwu Du, Nora D. Volkow, and Yingtian Pan
Biomed. Opt. Express 5(9) 3217-3230 (2014)

Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

Sava Sakadžić, Shuai Yuan, Ergin Dilekoz, Svetlana Ruvinskaya, Sergei A. Vinogradov, Cenk Ayata, and David A. Boas
Appl. Opt. 48(10) D169-D177 (2009)

Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex

Zhongchi Luo, Zhenguo Wang, Zhijia Yuan, Congwu Du, and Yingtian Pan
Opt. Lett. 33(10) 1156-1158 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved