Abstract

Pathological changes of skin will change the tissue’s birefringence and structure, which can be measured by the polarization and spectral changes of the tissue’s scattering light. Light-scattering spectropolarimetry is an effective tool to measure these features for quantitative pathology analysis. An epithelial tissue imaging spectropolarimeter is proposed to acquire the spectral, polarimetric, and spatial characteristic changes of the tissue, and then a spectropolarimetric correction method is proposed to compute the tissue’s polarimetric spectrum, which can be used for pathological analysis of tissue. Finally, to aid doctors for more accurate clinical diagnosis, a false color mapping based spectropolarimetric image fusion method is proposed to enhance the visual differences between normal skin and pathological skin. Experimental results demonstrate the potential of the proposed techniques for pathological diagnosis and treatment evaluation of skin.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  2. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
    [CrossRef] [PubMed]
  3. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329-340(2002).
    [CrossRef] [PubMed]
  4. G. L. Liu, Y. F. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220(2002).
    [CrossRef]
  5. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129(2000).
    [CrossRef] [PubMed]
  6. R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
    [CrossRef]
  7. J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
    [CrossRef]
  8. T. Shi and C. A. Dimarzio, “Multispectral method for skin imaging: development and validation,” Appl. Opt. 46, 8619-8626 (2007).
    [CrossRef] [PubMed]
  9. G. N. Stamatas, C. Balasb, and N. Kollias, “Hyperspectral image acquisition and analysis of skin,” Proc. SPIE 4959, 77-82 (2003).
    [CrossRef]
  10. T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
    [CrossRef] [PubMed]
  11. L. Perelman, “Polarized light scattering spectroscopy of epithelial structures,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), pp. 530-531.
  12. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, “Coherence and polarization of light propagating through scattering media and biological tissues,” Appl. Opt. 37, 7357-7367 (1998).
    [CrossRef]
  13. D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79-100 (2003).
  14. J. R. Schott, Remote Sensing: The Image Chain Approach (Cambridge U. Press), Chap.1, pp. 13-17 .
  15. Y. Zhao, Q. Pan, and H. Zhang, “New polarization imaging method based on spatially adaptive wavelet image fusion,” Opt. Eng. 44, 123202 (2006).
    [CrossRef]
  16. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), pp. 31-63, pp. 133-145.
  17. Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552-1560 (2003).
    [CrossRef]
  18. G. Pajares and J. Manuel de la Cruz, “A wavelet-based image fusion tutorial,” Pattern Recogn. 37, 1855-1872 (2004).
    [CrossRef]
  19. 'A. Toet and J. Walraven, “New false color mapping for image fusion,” Opt. Eng. 35, 650-658 (1996).
    [CrossRef]
  20. I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer-Verlag, 2002), Chap. 6, pp. 111-130.
  21. M. Manabu, “Past history and occurrence patterns of chilblain in collagen diseases,” Nishinihon J. Dermatol. 6, 736-741(2002).
  22. A. M. P. Montgomery, R. A. Reisfeld, and D. A. Cheresh, “Integrin aVP3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen,” Proc. Natl. Acad. Sci. USA 91, 8856-8860 (1994).
    [CrossRef] [PubMed]
  23. M. Tercelj, T. Rott, D. Reinders, and Y. Fawzy, “Spectral bronchoscopy for evaluation of tissue vascular properties in lung cancer,” http://www.perceptronix.com/news/Publications/ERSPresentation_%2009062007.pdf.

2007

2006

Y. Zhao, Q. Pan, and H. Zhang, “New polarization imaging method based on spatially adaptive wavelet image fusion,” Opt. Eng. 44, 123202 (2006).
[CrossRef]

2004

G. Pajares and J. Manuel de la Cruz, “A wavelet-based image fusion tutorial,” Pattern Recogn. 37, 1855-1872 (2004).
[CrossRef]

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

2003

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79-100 (2003).

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), pp. 31-63, pp. 133-145.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552-1560 (2003).
[CrossRef]

G. N. Stamatas, C. Balasb, and N. Kollias, “Hyperspectral image acquisition and analysis of skin,” Proc. SPIE 4959, 77-82 (2003).
[CrossRef]

2002

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329-340(2002).
[CrossRef] [PubMed]

G. L. Liu, Y. F. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220(2002).
[CrossRef]

I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer-Verlag, 2002), Chap. 6, pp. 111-130.

M. Manabu, “Past history and occurrence patterns of chilblain in collagen diseases,” Nishinihon J. Dermatol. 6, 736-741(2002).

2001

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

2000

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129(2000).
[CrossRef] [PubMed]

L. Perelman, “Polarized light scattering spectroscopy of epithelial structures,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), pp. 530-531.

1999

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

1998

1996

'A. Toet and J. Walraven, “New false color mapping for image fusion,” Opt. Eng. 35, 650-658 (1996).
[CrossRef]

1995

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

1994

A. M. P. Montgomery, R. A. Reisfeld, and D. A. Cheresh, “Integrin aVP3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen,” Proc. Natl. Acad. Sci. USA 91, 8856-8860 (1994).
[CrossRef] [PubMed]

1983

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Ahren, C.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Appelman, H.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Backman, V.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Badizadegan, K.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Balasb, C.

G. N. Stamatas, C. Balasb, and N. Kollias, “Hyperspectral image acquisition and analysis of skin,” Proc. SPIE 4959, 77-82 (2003).
[CrossRef]

Bigio, I. J.

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

Cameron, B. D.

G. L. Liu, Y. F. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220(2002).
[CrossRef]

Cheresh, D. A.

A. M. P. Montgomery, R. A. Reisfeld, and D. A. Cheresh, “Integrin aVP3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen,” Proc. Natl. Acad. Sci. USA 91, 8856-8860 (1994).
[CrossRef] [PubMed]

Correa, P.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Damaschini, V.

Dasari, R.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Dimarzio, C. A.

Epifanie, M.

Fawzy, Y.

M. Tercelj, T. Rott, D. Reinders, and Y. Fawzy, “Spectral bronchoscopy for evaluation of tissue vascular properties in lung cancer,” http://www.perceptronix.com/news/Publications/ERSPresentation_%2009062007.pdf.

Feld, M.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Fenoglio, C.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Goldman, H.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Goldstein, D.

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), pp. 31-63, pp. 133-145.

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Haggitt, R.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Hamilton, S.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Healey, G.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552-1560 (2003).
[CrossRef]

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329-340(2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129(2000).
[CrossRef] [PubMed]

Jagannathan, R.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Jarry, G.

Jolliffe, I. T.

I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer-Verlag, 2002), Chap. 6, pp. 111-130.

Jurczak, M.

Kaiser, R.

Kollias, N.

G. N. Stamatas, C. Balasb, and N. Kollias, “Hyperspectral image acquisition and analysis of skin,” Proc. SPIE 4959, 77-82 (2003).
[CrossRef]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329-340(2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129(2000).
[CrossRef] [PubMed]

Lee, R.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Li, Y. F.

G. L. Liu, Y. F. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220(2002).
[CrossRef]

Liu, G. L.

G. L. Liu, Y. F. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220(2002).
[CrossRef]

Manabu, M.

M. Manabu, “Past history and occurrence patterns of chilblain in collagen diseases,” Nishinihon J. Dermatol. 6, 736-741(2002).

Manolakis, D.

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79-100 (2003).

Manuel de la Cruz, J.

G. Pajares and J. Manuel de la Cruz, “A wavelet-based image fusion tutorial,” Pattern Recogn. 37, 1855-1872 (2004).
[CrossRef]

Marden, D.

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79-100 (2003).

Martin, M.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Michaud, E.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Montgomery, A. M. P.

A. M. P. Montgomery, R. A. Reisfeld, and D. A. Cheresh, “Integrin aVP3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen,” Proc. Natl. Acad. Sci. USA 91, 8856-8860 (1994).
[CrossRef] [PubMed]

Morson, B.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Mourant, J. R.

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

Pajares, G.

G. Pajares and J. Manuel de la Cruz, “A wavelet-based image fusion tutorial,” Pattern Recogn. 37, 1855-1872 (2004).
[CrossRef]

Pan, Q.

Y. Zhao, Q. Pan, and H. Zhang, “New polarization imaging method based on spatially adaptive wavelet image fusion,” Opt. Eng. 44, 123202 (2006).
[CrossRef]

Pan, X.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Pan, Z.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552-1560 (2003).
[CrossRef]

Perelman, L.

L. Perelman, “Polarized light scattering spectroscopy of epithelial structures,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), pp. 530-531.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Prasad, M.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552-1560 (2003).
[CrossRef]

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329-340(2002).
[CrossRef] [PubMed]

Ransohoff, D.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Reinders, D.

M. Tercelj, T. Rott, D. Reinders, and Y. Fawzy, “Spectral bronchoscopy for evaluation of tissue vascular properties in lung cancer,” http://www.perceptronix.com/news/Publications/ERSPresentation_%2009062007.pdf.

Reisfeld, R. A.

A. M. P. Montgomery, R. A. Reisfeld, and D. A. Cheresh, “Integrin aVP3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen,” Proc. Natl. Acad. Sci. USA 91, 8856-8860 (1994).
[CrossRef] [PubMed]

Richard, L.

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

Riddell, R.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129(2000).
[CrossRef] [PubMed]

Rott, T.

M. Tercelj, T. Rott, D. Reinders, and Y. Fawzy, “Spectral bronchoscopy for evaluation of tissue vascular properties in lung cancer,” http://www.perceptronix.com/news/Publications/ERSPresentation_%2009062007.pdf.

Schott, J. R.

J. R. Schott, Remote Sensing: The Image Chain Approach (Cambridge U. Press), Chap.1, pp. 13-17 .

Shaw, G. A.

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79-100 (2003).

Shi, T.

Song, J.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Stamatas, G. N.

G. N. Stamatas, C. Balasb, and N. Kollias, “Hyperspectral image acquisition and analysis of skin,” Proc. SPIE 4959, 77-82 (2003).
[CrossRef]

Steimer, E.

Stokes, D. L.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Tamara, J.

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

Tercelj, M.

M. Tercelj, T. Rott, D. Reinders, and Y. Fawzy, “Spectral bronchoscopy for evaluation of tissue vascular properties in lung cancer,” http://www.perceptronix.com/news/Publications/ERSPresentation_%2009062007.pdf.

Toet, A.

'A. Toet and J. Walraven, “New false color mapping for image fusion,” Opt. Eng. 35, 650-658 (1996).
[CrossRef]

Tromberg, B.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552-1560 (2003).
[CrossRef]

Tsutomu, S.

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

Vo-Dinh, T.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Wabuyele, M. B.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

Walraven, J.

'A. Toet and J. Walraven, “New false color mapping for image fusion,” Opt. Eng. 35, 650-658 (1996).
[CrossRef]

Zhang, H.

Y. Zhao, Q. Pan, and H. Zhang, “New polarization imaging method based on spatially adaptive wavelet image fusion,” Opt. Eng. 44, 123202 (2006).
[CrossRef]

Zhao, Y.

Y. Zhao, Q. Pan, and H. Zhang, “New polarization imaging method based on spatially adaptive wavelet image fusion,” Opt. Eng. 44, 123202 (2006).
[CrossRef]

Appl. Opt.

Human Pathol.

R. Riddell, H. Goldman, D. Ransohoff, H. Appelman, C. Fenoglio, R. Haggitt, C. Ahren, P. Correa, S. Hamilton, and B. Morson, “Dysplasia in inflammatory bowel-disease, standardized classification with provisional clinical-applications,” Human Pathol. 14, 931-968 (1983).
[CrossRef]

IEEE Eng. Med. Biol. Mag.

T. Vo-Dinh, D. L. Stokes, M. B. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michaud, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40-49 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. Dasari, L. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1552-1560 (2003).
[CrossRef]

J. Biomed. Opt.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329-340(2002).
[CrossRef] [PubMed]

Laser Surg. Med.

J. R. Mourant, I. J. Bigio, J. Boyer, L. Richard, J. Tamara, and S. Tsutomu, “Spectroscopic diagnosis of blader cancer with elastic light scattering,” Laser Surg. Med. 7, 350-357(1995).
[CrossRef]

Lasers Surg. Med.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129(2000).
[CrossRef] [PubMed]

Lincoln Lab. J.

D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing for automatic target detection applications,” Lincoln Lab. J. 14, 79-100 (2003).

Nat. Med.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, and M. Feld,“Imaging human epithelial properties with polarized lightscattering spectroscopy,” Nat. Med. 7, 1245-1248 (2001).
[CrossRef] [PubMed]

Nishinihon J. Dermatol.

M. Manabu, “Past history and occurrence patterns of chilblain in collagen diseases,” Nishinihon J. Dermatol. 6, 736-741(2002).

Opt. Eng.

'A. Toet and J. Walraven, “New false color mapping for image fusion,” Opt. Eng. 35, 650-658 (1996).
[CrossRef]

Y. Zhao, Q. Pan, and H. Zhang, “New polarization imaging method based on spatially adaptive wavelet image fusion,” Opt. Eng. 44, 123202 (2006).
[CrossRef]

Pattern Recogn.

G. Pajares and J. Manuel de la Cruz, “A wavelet-based image fusion tutorial,” Pattern Recogn. 37, 1855-1872 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. USA

A. M. P. Montgomery, R. A. Reisfeld, and D. A. Cheresh, “Integrin aVP3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen,” Proc. Natl. Acad. Sci. USA 91, 8856-8860 (1994).
[CrossRef] [PubMed]

Proc. SPIE

G. L. Liu, Y. F. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220(2002).
[CrossRef]

G. N. Stamatas, C. Balasb, and N. Kollias, “Hyperspectral image acquisition and analysis of skin,” Proc. SPIE 4959, 77-82 (2003).
[CrossRef]

Other

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), pp. 31-63, pp. 133-145.

J. R. Schott, Remote Sensing: The Image Chain Approach (Cambridge U. Press), Chap.1, pp. 13-17 .

L. Perelman, “Polarized light scattering spectroscopy of epithelial structures,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2000), pp. 530-531.

M. Tercelj, T. Rott, D. Reinders, and Y. Fawzy, “Spectral bronchoscopy for evaluation of tissue vascular properties in lung cancer,” http://www.perceptronix.com/news/Publications/ERSPresentation_%2009062007.pdf.

I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer-Verlag, 2002), Chap. 6, pp. 111-130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Illustration of the established spectropolarimetric imaging system. The spectral range from 400 to 720 nm . There are a total of 32 spectral bands with 10 nm space between each band. The linear polarization characteristics—intensity, the degree of linear polarization, and the phase of polarization at each band—can be acquired.

Fig. 2
Fig. 2

Configuration of LCTF. It has six stages, each of which consists of polarizer (a), fixed retarder (c), and liquid crystal elements (b).

Fig. 3
Fig. 3

Percentage of linearly polarized light, oriented so that maximum transmission is attained, passing through the filter relative to the amount that entered.

Fig. 4
Fig. 4

Structure of the spectropolarimetric imaging and analysis system.

Fig. 5
Fig. 5

Series of example skin images at different spectral bands: (a)  530 nm , (b)  560 nm , (c)  590 nm , (d)  620 nm , (e)  650 nm , (f)  680 nm .

Fig. 6
Fig. 6

Skin image described by different polarimetric parameters at 590 nm : (a)  S 0 , (b)  S 1 , (c)  S 2 , (d) DoLP.

Fig. 7
Fig. 7

Reconstructed spectropolarimetric curves of normal tissue and chilblain tissue: (a)  S 0 , (b)  S 1 , (c)  S 2 , and (d) DoLP. The x coordinate represents wavelength, and the y coordinate represents reflectance.

Fig. 8
Fig. 8

Example of the spectropolarimetric false color image fusion process: (a) image of Co S 0 , (b) image of Co DoLP , (c) image of DoLP * , (d) image of S 0 * , (e) image of S 0 * * , (f) image of DoLP * * , (g) visually enhanced result, (h) reflectance image of chilblain at 590 nm .

Fig. 9
Fig. 9

Benign pigmented nevus images at intensities of (a)  560 nm , (b)  590 nm , (c)  620 nm , (d)  650 nm , (e)  S 0 image at 590 nm , (f)  S 1 image at 590 nm , (g)  S 2 image at 590 nm , and (h) DoLP image at 590 nm .

Fig. 10
Fig. 10

Reconstructed spectropolarimetric curves of normal tissue and benign pigmented nevus: (a)  S 0 ,(b) DoLP. The x coordinate is the wavelength, and the y coordinate is reflectance.

Fig. 11
Fig. 11

(a) Reflectance image of benign pigmented nevus at 590 nm , (b) visually enhanced result of (a).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

S 0 = i 0 + i 90 ,
S 1 = i 0 i 90 ,
S 2 = i 45 + i 35 ,
DoLP = S 1 2 + S 2 2 S 0 .
DN ( x , y , λ , α ) = t ( x , y , λ , α ) R ( x , y , λ , α ) + O ( x , y , λ , α ) ,
DN w ( x , y , λ , α ) = t ( x , y , λ , α ) R w ( λ , α ) + O ( x , y , λ , α ) ,
DN b ( x , y , λ , α ) = t ( x , y , λ , α ) R w ( λ , α ) + O ( x , y , λ , α ) .
R ( x , y , λ , α ) = ( DN ( x , y , λ , α ) DN b ( x , y , λ , α ) ) R w ( λ , α ) + ( DN w ( x , y , λ , α ) DN ( x , y , λ , α ) ) R b ( λ , α ) DN w ( x , y , λ , α ) DN b ( x , y , λ , α ) .
R ( x , y , λ , S 0 ) = R ( x , y , λ , 0 ° ) + R ( x , y , λ , 90 ° ) ,
R ( x , y , λ , S 1 ) = R ( x , y , λ , 0 ° ) R ( x , y , λ , 90 ° ) ,
R ( x , y , λ , S 2 ) = R ( x , y , λ , 45 ° ) R ( x , y , λ , 135 ° ) ,
R ( x , y , λ , DoLP ) = R ( x , y , λ , S 1 ) 2 + R ( x , y , λ , S 2 ) 2 R ( x , y , λ , S 0 ) .
Ω = 1 N S 0 S 0 T .
Co S 0 = S 0 , λ 1 S 0 , λ 2 S 0 , λ 3 ,
Co DoLP = DoLP λ 1 DoLP λ 2 DoLP λ 3 .
DoLP * = DoLP λ 1 Co DoLP , S 0 * = S 0 , λ 1 Co S 0 .
DoLP * = DoLP λ 1 Co DoLP S 0 * , S 0 * * = S 0 , λ 1 S 0 * .
( R G B ) = ( S 0 * * DoLP * * S 0 * ) .

Metrics