Abstract

Direct optical methods to stimulate and record neural activity provide artifact-free, noninvasive, and noncontact neurophysiological procedures. For stimulation, focused mid-infrared light alters membrane potential and activates individual neural processes. Simultaneous intrinsic scattered light parameters, including birefringence changes, can record neural activity with signals similar to potentiometric dyes. The simultaneous combination of optical stimulation and optical recording techniques provide the potential for powerful tools that may someday remove the need for invasive wires during electrophysiological recordings.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
    [CrossRef]
  2. W. M. Klop, A. Hartlooper, J. J. Briare, and J. H. Frijns, “A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements,” Acta Otolaryngol. 124, 137-143 (2004).
    [CrossRef] [PubMed]
  3. D. T. O'Keeffe, G. M. Lyons, A. E. Donnelly, and C. A. Byrne, “Stimulus artifact removal using a software-based two-stage peak detection algorithm,” J. Neurosci. Methods 109, 137-145 (2001).
    [CrossRef] [PubMed]
  4. V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods 148, 1-18 (2005).
    [CrossRef] [PubMed]
  5. D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
    [CrossRef]
  6. R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
    [CrossRef] [PubMed]
  7. S. R. Kain and S. Ganguly, “Overview of genetic reporter systems,” in Current Protocols in Molecular Biology (Wiley, 2001), Chap. 9, unit 9.6.
    [CrossRef]
  8. G. Mayer and A. Heckel, “Biologically active molecules with a 'light switch',” Angew. Chem. Int. Ed. Engl. 45, 4900-4921 (2006).
    [CrossRef] [PubMed]
  9. J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).
  10. C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
    [CrossRef] [PubMed]
  11. A. J. Foust, R. M. Beiu, and D. M. Rector, “Optimized birefringence changes during isolated nerve activation,” Appl. Opt. 44, 2008-2012 (2005).
    [CrossRef] [PubMed]
  12. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
    [CrossRef] [PubMed]
  13. J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
    [CrossRef] [PubMed]
  14. D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627 (2005).
    [CrossRef] [PubMed]
  15. A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13, 044038 (2008).
    [CrossRef] [PubMed]
  16. A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145, 887-889(2007).
    [CrossRef] [PubMed]
  17. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435-442 (1997).
    [CrossRef] [PubMed]
  18. L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438-441 (1968).
    [CrossRef] [PubMed]
  19. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. USA 61, 883-888 (1968).
    [CrossRef] [PubMed]
  20. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
    [CrossRef] [PubMed]
  21. K. M. Carter, J. S. George, and D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9-16 (2004).
    [CrossRef] [PubMed]
  22. K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. 67, 325-342(1929).
    [PubMed]

2008 (1)

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13, 044038 (2008).
[CrossRef] [PubMed]

2007 (4)

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145, 887-889(2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

2006 (2)

G. Mayer and A. Heckel, “Biologically active molecules with a 'light switch',” Angew. Chem. Int. Ed. Engl. 45, 4900-4921 (2006).
[CrossRef] [PubMed]

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

2005 (4)

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627 (2005).
[CrossRef] [PubMed]

J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods 148, 1-18 (2005).
[CrossRef] [PubMed]

A. J. Foust, R. M. Beiu, and D. M. Rector, “Optimized birefringence changes during isolated nerve activation,” Appl. Opt. 44, 2008-2012 (2005).
[CrossRef] [PubMed]

2004 (2)

K. M. Carter, J. S. George, and D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

W. M. Klop, A. Hartlooper, J. J. Briare, and J. H. Frijns, “A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements,” Acta Otolaryngol. 124, 137-143 (2004).
[CrossRef] [PubMed]

2003 (1)

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

2001 (2)

D. T. O'Keeffe, G. M. Lyons, A. E. Donnelly, and C. A. Byrne, “Stimulus artifact removal using a software-based two-stage peak detection algorithm,” J. Neurosci. Methods 109, 137-145 (2001).
[CrossRef] [PubMed]

S. R. Kain and S. Ganguly, “Overview of genetic reporter systems,” in Current Protocols in Molecular Biology (Wiley, 2001), Chap. 9, unit 9.6.
[CrossRef]

1997 (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435-442 (1997).
[CrossRef] [PubMed]

1991 (1)

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

1978 (1)

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

1968 (2)

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. USA 61, 883-888 (1968).
[CrossRef] [PubMed]

1929 (1)

K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. 67, 325-342(1929).
[PubMed]

Airan, R. D.

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

Antic, S.

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

Babb, T. L.

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

Bayon, R.

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

Beiu, R. M.

Blonder, G. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

Briare, J. J.

W. M. Klop, A. Hartlooper, J. J. Briare, and J. H. Frijns, “A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements,” Acta Otolaryngol. 124, 137-143 (2004).
[CrossRef] [PubMed]

Byrne, C. A.

D. T. O'Keeffe, G. M. Lyons, A. E. Donnelly, and C. A. Byrne, “Stimulus artifact removal using a software-based two-stage peak detection algorithm,” J. Neurosci. Methods 109, 137-145 (2001).
[CrossRef] [PubMed]

Carnay, L.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. USA 61, 883-888 (1968).
[CrossRef] [PubMed]

Carter, K. M.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627 (2005).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, and D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

Chance, B.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435-442 (1997).
[CrossRef] [PubMed]

Cohen, L. B.

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

Crandall, P. H.

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

Deisseroth, K.

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

Djurisic, M.

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

Donnelly, A. E.

D. T. O'Keeffe, G. M. Lyons, A. E. Donnelly, and C. A. Byrne, “Stimulus artifact removal using a software-based two-stage peak detection algorithm,” J. Neurosci. Methods 109, 137-145 (2001).
[CrossRef] [PubMed]

Falk, C. X.

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

Foust, A. J.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13, 044038 (2008).
[CrossRef] [PubMed]

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145, 887-889(2007).
[CrossRef] [PubMed]

A. J. Foust, R. M. Beiu, and D. M. Rector, “Optimized birefringence changes during isolated nerve activation,” Appl. Opt. 44, 2008-2012 (2005).
[CrossRef] [PubMed]

Frijns, J. H.

W. M. Klop, A. Hartlooper, J. J. Briare, and J. H. Frijns, “A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements,” Acta Otolaryngol. 124, 137-143 (2004).
[CrossRef] [PubMed]

Furusawa, K.

K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. 67, 325-342(1929).
[PubMed]

Ganguly, S.

S. R. Kain and S. Ganguly, “Overview of genetic reporter systems,” in Current Protocols in Molecular Biology (Wiley, 2001), Chap. 9, unit 9.6.
[CrossRef]

George, J. S.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627 (2005).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, and D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

Hartlooper, A.

W. M. Klop, A. Hartlooper, J. J. Briare, and J. H. Frijns, “A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements,” Acta Otolaryngol. 124, 137-143 (2004).
[CrossRef] [PubMed]

Heckel, A.

G. Mayer and A. Heckel, “Biologically active molecules with a 'light switch',” Angew. Chem. Int. Ed. Engl. 45, 4900-4921 (2006).
[CrossRef] [PubMed]

Hille, B.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

Hu, E. S.

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

Izzo, A. D.

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

Jansen, E. D.

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).

Kain, S. R.

S. R. Kain and S. Ganguly, “Overview of genetic reporter systems,” in Current Protocols in Molecular Biology (Wiley, 2001), Chap. 9, unit 9.6.
[CrossRef]

Kao, C.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).

Kao, C. C.

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

Keynes, R. D.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

Kim, J.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

Kleinfeld, D.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

Klop, W. M.

W. M. Klop, A. Hartlooper, J. J. Briare, and J. H. Frijns, “A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements,” Acta Otolaryngol. 124, 137-143 (2004).
[CrossRef] [PubMed]

Konrad, P.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).

Konrad, P. E.

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

LaPorta, A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

Lieb, J. P.

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

Lyons, G. M.

D. T. O'Keeffe, G. M. Lyons, A. E. Donnelly, and C. A. Byrne, “Stimulus artifact removal using a software-based two-stage peak detection algorithm,” J. Neurosci. Methods 109, 137-145 (2001).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).

Mariani, E.

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

Mayer, G.

G. Mayer and A. Heckel, “Biologically active molecules with a 'light switch',” Angew. Chem. Int. Ed. Engl. 45, 4900-4921 (2006).
[CrossRef] [PubMed]

Meltzer, L. A.

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

Milner, T.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

O'Keeffe, D. T.

D. T. O'Keeffe, G. M. Lyons, A. E. Donnelly, and C. A. Byrne, “Stimulus artifact removal using a software-based two-stage peak detection algorithm,” J. Neurosci. Methods 109, 137-145 (2001).
[CrossRef] [PubMed]

Otting, M.

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

Polikov, V. S.

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods 148, 1-18 (2005).
[CrossRef] [PubMed]

Raccuia-Behling, F.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

Rector, D. M.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13, 044038 (2008).
[CrossRef] [PubMed]

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145, 887-889(2007).
[CrossRef] [PubMed]

A. J. Foust, R. M. Beiu, and D. M. Rector, “Optimized birefringence changes during isolated nerve activation,” Appl. Opt. 44, 2008-2012 (2005).
[CrossRef] [PubMed]

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627 (2005).
[CrossRef] [PubMed]

K. M. Carter, J. S. George, and D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

Reichert, W. M.

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods 148, 1-18 (2005).
[CrossRef] [PubMed]

Richter, C. P.

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

Rojas, M. J.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13, 044038 (2008).
[CrossRef] [PubMed]

Roy, M.

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

Sandlin, R.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. USA 61, 883-888 (1968).
[CrossRef] [PubMed]

Schei, J. L.

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13, 044038 (2008).
[CrossRef] [PubMed]

Slusher, R. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

Soper, H. V.

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

Stepnoski, R. A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

Strain, G. M.

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

Tasaki, I.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. USA 61, 883-888 (1968).
[CrossRef] [PubMed]

Thomsen, S.

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

Tresco, P. A.

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods 148, 1-18 (2005).
[CrossRef] [PubMed]

Vijaykumar, R.

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435-442 (1997).
[CrossRef] [PubMed]

Volegov, P. L.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627 (2005).
[CrossRef] [PubMed]

Wachowiak, M.

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

Walsh, J. T.

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

Watanabe, A.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. USA 61, 883-888 (1968).
[CrossRef] [PubMed]

Wells, J.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

Wells, J. D.

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).

Whitaker, P.

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

Zecevic, D.

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

Zochowski, M. R.

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

Acta Otolaryngol. (1)

W. M. Klop, A. Hartlooper, J. J. Briare, and J. H. Frijns, “A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements,” Acta Otolaryngol. 124, 137-143 (2004).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

G. Mayer and A. Heckel, “Biologically active molecules with a 'light switch',” Angew. Chem. Int. Ed. Engl. 45, 4900-4921 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve.,” Biophys. J. 93, 2567-2580 (2007).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

R. D. Airan, E. S. Hu, R. Vijaykumar, M. Roy, L. A. Meltzer, and K. Deisseroth, “Integration of light-controlled neuronal firing and fast circuit imaging,” Curr. Opin. Neurobiol. 17, 587-592 (2007).
[CrossRef] [PubMed]

Electroencephalogr. Clin. Neurophysiol. (1)

T. L. Babb, E. Mariani, G. M. Strain, J. P. Lieb, H. V. Soper, and P. H. Crandall, “A sample and hold amplifier system for stimulus artifact suppression,” Electroencephalogr. Clin. Neurophysiol. 44, 528-531 (1978).
[CrossRef]

J. Biomed. Opt. (2)

J. D. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10, 064003 (2005).

A. J. Foust, J. L. Schei, M. J. Rojas, and D. M. Rector, “In vitro and in vivo noise analysis for optical neural recording,” J. Biomed. Opt. 13, 044038 (2008).
[CrossRef] [PubMed]

J. Neurosci. Methods (3)

K. M. Carter, J. S. George, and D. M. Rector, “Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve,” J. Neurosci. Methods 135, 9-16 (2004).
[CrossRef] [PubMed]

D. T. O'Keeffe, G. M. Lyons, A. E. Donnelly, and C. A. Byrne, “Stimulus artifact removal using a software-based two-stage peak detection algorithm,” J. Neurosci. Methods 109, 137-145 (2001).
[CrossRef] [PubMed]

V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” J. Neurosci. Methods 148, 1-18 (2005).
[CrossRef] [PubMed]

J. Physiol. (1)

K. Furusawa, “The depolarization of crustacean nerve by stimulation or oxygen want,” J. Physiol. 67, 325-342(1929).
[PubMed]

Lasers Surg. Med. (2)

J. D. Wells, S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen, “Optically mediated nerve stimulation: identification of injury thresholds,” Lasers Surg. Med. 39, 513-526 (2007).
[CrossRef] [PubMed]

C. P. Richter, R. Bayon, A. D. Izzo, M. Otting, A. D. Izzo, C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr., “Laser stimulation of the auditory nerve,” Lasers Surg. Med. 38, 745-753 (2006).
[CrossRef] [PubMed]

Nature (1)

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218, 438-441 (1968).
[CrossRef] [PubMed]

NeuroImage (1)

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627 (2005).
[CrossRef] [PubMed]

Neuroscience (1)

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145, 887-889(2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. USA 61, 883-888 (1968).
[CrossRef] [PubMed]

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. USA 88, 9382-9386(1991).
[CrossRef] [PubMed]

Trends Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435-442 (1997).
[CrossRef] [PubMed]

Other (2)

S. R. Kain and S. Ganguly, “Overview of genetic reporter systems,” in Current Protocols in Molecular Biology (Wiley, 2001), Chap. 9, unit 9.6.
[CrossRef]

D. Zecevic, M. Djurisic, L. B. Cohen, S. Antic, M. Wachowiak, C. X. Falk, and M. R. Zochowski , “Imaging nervous system activity with voltage-sensitive dyes,” in Current Protocols in Neuroscience (Wiley, 2003), Chap. 6, unit 6.17.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Walking lobster leg claws with separated nerve fascicles were extracted utilizing the Furusawa method. A single fascicle placed in the nerve chamber and immersed in ringer is depicted in (b). The 0.6 mm optical fiber for laser stimulation, coming from the top left corner, was attached to a micromanipulator and positioned over the nerve. In the middle of the chamber, the nerve was suspended over the optical window and illuminated by a 665 nm LED for detection of the optical response. (c) Side view of the optical recording setup with the nerve represented by the white line in the middle of the chamber. An LED emitting 665 nm light illuminated the nerve. Crossed polarizers (POL1 and POL2) were placed at 45 ° with respect to the long axis of the nerve and sandwiched above and below the middle section to detect changes in birefringent light with the photodiode (PD). (d) Top view of the chamber, which had four wells on each side of the chamber that contained silver wire and were isolated with petroleum jelly. Two pairs of electrical stimulation wires (ESTIM1 and ESTIM2) were on either side of the center section along with two pairs of electrical recording wires (ER1 and ER2). Since the polarizers blocked the central portion of the chamber, optical stimulation positions (OSTIM1 and OSTIM2) needed to be on either end of the nerve. The optical window in the middle of the chamber was used to illuminate the nerve with 665 nm LED light. A ruler at the bottom in (d) shows approximate distances for each section from the center of the chamber.

Fig. 2
Fig. 2

Electrical and optical (birefringent) responses from electrical and optical stimulation for four lobster walking leg nerves. Both electrical ( 2 mA current) and optical ( 2 ms pulse width) stimulation were performed on the left side and right side of the nerve, causing population action potentials to propagate in the left to right or right to left direction, respectively. Electrical responses were recorded on both the left side (ER1, electrical response, black line) and the right side (ER2, electrical response, gray line) of the chamber. Electrical stimulation traces represent an average of 20 stimuli, while the optical stimulation traces are an average of 4 stimuli. Vertical lines indicate the time of stimulation. Note the lack of noticeable stimulus artifact in the optical stimulation traces.

Fig. 3
Fig. 3

Electrical responses to mild optical stimulation (left side stimulation) in a nerve fascicle show action potentials at a minimal pulse width of 400 μs . With increasing optical pulse widths, more axons were activated. The black lines are data collected by the left electrode position (ER1, Fig. 1D), which was closer to the optical stimulation fiber, while the delayed gray traces show recordings from the electrodes on the right side (ER2, Fig. 1D), farther from the stimulator. The distance between the recording electrodes was approximately 21 mm , thus action potentials propagated at a rate between 1.0 and 1.5 m / s . At 1 ms stimulation pulse width, action potentials are no longer noted, likely due to thermal injury of the fascicle. The vertical line indicates the time of stimulation. These data were collected with a very low noise amplifier and a much higher gain than the data in Fig. 2. At this gain, a small stimulus artifact is visible due to electrical crosstalk between the laser trigger and the electrodes. This artifact could be removed by shielding the laser drive cable.

Metrics