Abstract

Inverse light scattering analysis (ILSA) seeks to associate measured scattering properties with the most probable theoretical scattering distribution, making it a useful tool for assessing structure in biological materials. The accuracy of ILSA depends on the compatibility of the light scattering geometry with the light scattering model. In this study, we compare the accuracy obtained when analyzing light scattering data from spheroids using a numerical implementation of Mie theory, and the T matrix, a numerical method of solving light scattering from spheroids. Our experimental data are acquired using novel optical phantoms containing spheroidal scatterers and angle-resolved low-coherence interferometry, a depth- and angle-resolved light scattering measurement modality. The results show that Mie theory can accurately assess spheroidal structure despite the geometric incompatibility provided measurements are taken in multiple orientations of the sample relative to the incident polarization and the measured scattering angle. In comparison, analysis using the T-matrix method is highly accurate and more reliable yet requires measurements from only a single orientation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Boone, G. J. Kelloff, and V. E. Steele, “Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy,” Cancer Res. 52, 1651-1659(1992).
    [PubMed]
  2. F. Guilak, “Compression-induced changes in the shape and volume of the chondrocyte nucleus,” J. Biomech. 28, 1529-1541 (1995).
    [CrossRef] [PubMed]
  3. C. S. Chen and D. E. Ingber, “Tensegrity and mechanoregulation: from skeleton to cytoskeleton,” Osteoarthritis Cartilage 7, 81-94 (1999).
    [CrossRef] [PubMed]
  4. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473-3484 (2003).
    [CrossRef] [PubMed]
  5. A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
    [CrossRef] [PubMed]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. xiv, p. 530.
  7. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
    [CrossRef] [PubMed]
  8. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  9. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
    [CrossRef] [PubMed]
  10. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
    [CrossRef] [PubMed]
  11. J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007).
    [CrossRef] [PubMed]
  12. K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
    [CrossRef] [PubMed]
  13. A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
    [PubMed]
  14. A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
    [CrossRef] [PubMed]
  15. M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).
  16. N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
    [CrossRef]
  17. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735-2748 (1998).
    [CrossRef]
  18. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
    [CrossRef] [PubMed]
  19. D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl Opt 46, 6185-6191 (2007).
    [CrossRef] [PubMed]
  20. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326-1328(2007).
    [CrossRef] [PubMed]
  21. K. J. Chalut, M. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25, 1866-1874 (2008)
  22. K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
    [CrossRef] [PubMed]
  23. J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
    [CrossRef] [PubMed]
  24. K. M. Keville, E. I. Franses, and J. M. Caruthers, “Preparation and characterization of monodisperse polymer microspheroids,” J. Colloid Interface Sci. 144, 103-126 (1991).
    [CrossRef]
  25. J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
    [CrossRef]

2008 (2)

K. J. Chalut, M. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25, 1866-1874 (2008)

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

2007 (5)

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl Opt 46, 6185-6191 (2007).
[CrossRef] [PubMed]

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326-1328(2007).
[CrossRef] [PubMed]

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007).
[CrossRef] [PubMed]

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

2006 (1)

J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
[CrossRef]

2005 (2)

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

2003 (2)

J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473-3484 (2003).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

2002 (3)

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

2000 (3)

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
[CrossRef]

1999 (2)

C. S. Chen and D. E. Ingber, “Tensegrity and mechanoregulation: from skeleton to cytoskeleton,” Osteoarthritis Cartilage 7, 81-94 (1999).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

1998 (1)

1995 (1)

F. Guilak, “Compression-induced changes in the shape and volume of the chondrocyte nucleus,” J. Biomech. 28, 1529-1541 (1995).
[CrossRef] [PubMed]

1992 (1)

C. W. Boone, G. J. Kelloff, and V. E. Steele, “Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy,” Cancer Res. 52, 1651-1659(1992).
[PubMed]

1991 (1)

K. M. Keville, E. I. Franses, and J. M. Caruthers, “Preparation and characterization of monodisperse polymer microspheroids,” J. Colloid Interface Sci. 144, 103-126 (1991).
[CrossRef]

1983 (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. xiv, p. 530.

Aida, T.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Alsholm, P.

Andersson-Engels, S.

Backman, V.

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Badizadegan, K.

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Baird, M.

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

Bigelow, C. E.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

Bigio, I. J.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. xiv, p. 530.

Boon, C. W.

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

Boone, C. W.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

C. W. Boone, G. J. Kelloff, and V. E. Steele, “Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy,” Cancer Res. 52, 1651-1659(1992).
[PubMed]

Bown, S. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Boyer, J. D.

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Calkins, D. J.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

Carpenter, S.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Caruthers, J. M.

K. M. Keville, E. I. Franses, and J. M. Caruthers, “Preparation and characterization of monodisperse polymer microspheroids,” J. Colloid Interface Sci. 144, 103-126 (1991).
[CrossRef]

Chalut, K. J.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

K. J. Chalut, M. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25, 1866-1874 (2008)

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326-1328(2007).
[CrossRef] [PubMed]

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

Chen, C. S.

C. S. Chen and D. E. Ingber, “Tensegrity and mechanoregulation: from skeleton to cytoskeleton,” Osteoarthritis Cartilage 7, 81-94 (1999).
[CrossRef] [PubMed]

Chen, S.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

Chilkoti, A.

J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
[CrossRef]

D'Amico, T.

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

Dasari, R. R.

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Duncan, D. D.

D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl Opt 46, 6185-6191 (2007).
[CrossRef] [PubMed]

Farafonov, V. G.

N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
[CrossRef]

Feld, M. S.

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Finan, J. D.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

Foster, T. H.

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

Franses, E. I.

K. M. Keville, E. I. Franses, and J. M. Caruthers, “Preparation and characterization of monodisperse polymer microspheroids,” J. Colloid Interface Sci. 144, 103-126 (1991).
[CrossRef]

Freyer, J. P.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Galvan, J.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Giacomelli, M.

Giacomelli, M. G.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

Giesselman, B. R.

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007).
[CrossRef] [PubMed]

Gottfried, M.

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

Graf, R. N.

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473-3484 (2003).
[CrossRef] [PubMed]

Gress, F.

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Guilak, F.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

F. Guilak, “Compression-induced changes in the shape and volume of the chondrocyte nucleus,” J. Biomech. 28, 1529-1541 (1995).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Henning, T.

N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
[CrossRef]

Hovenier, J. W.

M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. xiv, p. 530.

Il'in, V. B.

N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
[CrossRef]

Ingber, D. E.

C. S. Chen and D. E. Ingber, “Tensegrity and mechanoregulation: from skeleton to cytoskeleton,” Osteoarthritis Cartilage 7, 81-94 (1999).
[CrossRef] [PubMed]

Itzkan, L.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Johnson, T. M.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Karlsson, A.

Keener, J.

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

Keener, J. D.

Kelley, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Kelloff, G. J.

C. W. Boone, G. J. Kelloff, and V. E. Steele, “Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy,” Cancer Res. 52, 1651-1659(1992).
[PubMed]

Keville, K. M.

K. M. Keville, E. I. Franses, and J. M. Caruthers, “Preparation and characterization of monodisperse polymer microspheroids,” J. Colloid Interface Sci. 144, 103-126 (1991).
[CrossRef]

Kresty, L. A.

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

Lacy, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Lakhani, S.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Leong, K. W.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

Lotan, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

M. H.,

J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
[CrossRef]

Michel, B.

N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

Mitra, S.

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007).
[CrossRef] [PubMed]

Mourant, J. R.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Muller, M. G.

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

Myakov, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Nilsson, A. M. K.

Nines, R.

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Pickard, D.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Pyhtila, J. W.

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326-1328(2007).
[CrossRef] [PubMed]

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
[CrossRef]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473-3484 (2003).
[CrossRef] [PubMed]

Richards-Kortum, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

Simnick, A. J.

J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
[CrossRef]

Sokolov, K.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Steele, V. E.

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

C. W. Boone, G. J. Kelloff, and V. E. Steele, “Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy,” Cancer Res. 52, 1651-1659(1992).
[PubMed]

Stoner, G. D.

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

Thomas, M. E.

D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl Opt 46, 6185-6191 (2007).
[CrossRef] [PubMed]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

Voshchinnikov, N. V.

N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
[CrossRef]

Wax, A.

K. J. Chalut, M. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25, 1866-1874 (2008)

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326-1328(2007).
[CrossRef] [PubMed]

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
[CrossRef]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473-3484 (2003).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

Wilson, J. D.

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

Yang, C. H.

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

Appl Opt (1)

D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl Opt 46, 6185-6191 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (3)

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88, 2929-2938(2005).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008).
[CrossRef] [PubMed]

Cancer Epidemiol Biomarkers Prev. (1)

K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In Situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.,” Cancer Epidemiol Biomarkers Prev. 16 , 223-227 (2007).
[CrossRef] [PubMed]

Cancer Res. (2)

A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boon, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559(2003).
[PubMed]

C. W. Boone, G. J. Kelloff, and V. E. Steele, “Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy,” Cancer Res. 52, 1651-1659(1992).
[PubMed]

Gastrointest. Endosc. (1)

J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus using angle-resolved low coherence interferometry,” Gastrointest. Endosc. 65, 487-491(2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

J Biomed. Opt. (2)

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, and C. W. Boone, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J Biomed. Opt. 10, 051604 (2005).
[CrossRef] [PubMed]

J. Biomech. (1)

F. Guilak, “Compression-induced changes in the shape and volume of the chondrocyte nucleus,” J. Biomech. 28, 1529-1541 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221-228(2000).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

J. W. Pyhtila, M. H., A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 034022 (2006).
[CrossRef]

J. Colloid Interface Sci. (1)

K. M. Keville, E. I. Franses, and J. M. Caruthers, “Preparation and characterization of monodisperse polymer microspheroids,” J. Colloid Interface Sci. 144, 103-126 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

N. V. Voshchinnikov, V. B. Il'in, T. Henning, B. Michel, and V. G. Farafonov, “Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results,” J. Quant. Spectrosc. Radiat. Transfer 65, 877-893(2000).
[CrossRef]

Opt Lett (1)

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c.,” Opt Lett 32, 2517-2519 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Osteoarthritis Cartilage (1)

C. S. Chen and D. E. Ingber, “Tensegrity and mechanoregulation: from skeleton to cytoskeleton,” Osteoarthritis Cartilage 7, 81-94 (1999).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Vol. xiv, p. 530.

M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Bright-field image of a single 12 μm bead after stretching in (a) TM orientation and (b) TE orientation and diagram indicating the scattering geometries.

Fig. 2
Fig. 2

Schematic of the a/LCI system (taken from [4], with permission). Serial scanning of the retroreflector (RR) and L4 enables depth-resolved mapping of the angular light scattering distribution from the sample.

Fig. 3
Fig. 3

a/LCI data processing method. The optical depth corresponding to the spheroidal scatterers is integrated to obtain scattered light intensity as a function of scattering angle. The distribution is then low-pass filtered and a second-order polynomial is subtracted to detrend the data. The processed signal is compared to a database of scattering distributions calculated by Mie theory or the T-matrix method in order to determine the properties of the scatterers. In this case, the T matrix is used, and the fitting algorithm yielded an EVD measurement of 12.3 μm with an aspect ratio of 0.86.

Fig. 4
Fig. 4

Graphic depiction of the (a) EVD and (b) aspect ratio results from T-matrix fitting, Mie theory fitting, and QIA.

Metrics