Abstract

Experimental methodology for imaging of laser-excited tissue autofluorescence bleaching rates has been developed and clinically tested. The fluorescence images were periodically captured from the same tissue area over a certain time, with subsequent detection of the fluorescence intensity decrease rate at each image pixel and further imaging the planar distribution of those values. Spectral features at each image pixel were analyzed with a hyperspectral imaging camera. Details of the equipment and image pro cessing are described as well as some measurement results that confirm the feasibility of the proposed technology.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Anderson and J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan and J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147-194.
  2. H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc. SPIE 4224, 366-373 (2000).
    [CrossRef]
  3. R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
    [CrossRef]
  4. Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.
  5. H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Laser-induced changes in autofluorescence of in-vivo skin,” Proc. SPIE 1882, 278-290 (1993).
    [CrossRef]
  6. E. V. Salomatina and A.B. Pravdin, “Fluorescence dynamics of human epidermis (ex vivo) and skin (in vivo),” Proc. SPIE 5068, 405-410 (2003).
    [CrossRef]
  7. A. A. Stratonnikov, V. S. Polikarpov, and V. B. Loschenov, “Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation,” Proc. SPIE 4241, 13-24 (2001).
    [CrossRef]
  8. A. Lihachev and J. Spigulis, “Skin autofluorescence fading at 405/532 nm laser excitation,” in Northern Optics, 2006 (IEEE, 2006), pp. 63-65.
    [CrossRef]
  9. K. König and I. Reinmann, “High--resolution multiphoton tomography of human skin with subcellular spatial resolution and picoseconds time resolution,” J Biomed. Opt. 8 (3), 432-439 (2003).
    [CrossRef] [PubMed]
  10. N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400-720 nm,” J. Invest. Dermatol. 89, 384-388 (1987).
    [CrossRef] [PubMed]
  11. D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin: a potential marker of photoaging,” Arch. Dermatol. 124, 1514-1518 (1988).
    [CrossRef] [PubMed]
  12. M. Tsuchida, T. Miura, and K. Aibara, “Lipofuscin and lipofuscin-like substances,” Chem. Phys. Lipids 44, 297-325 (1987).
    [CrossRef] [PubMed]
  13. B. Chance, L. Mela, and D. Wong, “Flavoproteins of the respiratory chain,” in Flavins and Flavoproteins, K. Yagi, ed. (University Park Press, 1968), pp. 102-121.
  14. S. Kozikowsky, L. J. Wolfram, and R. R. Alfano, “Fluorescence spectroscopy of eumelanins,” IEEE J. Quantum Electron. QE-20, 1379-1382 (1984).
    [CrossRef]
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Plenum, 1999).
  16. M. Ledvij, “Curve fitting made easy,” Ind. Phys. 9 (2), 24-27 (April/May 2003).
  17. E. W. Weisstein, http://mathworld.wolfram.com/LeastSquaresFittingExponential.html.
  18. H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
    [CrossRef] [PubMed]
  19. D. J. Mulder, “Skin autofluorescence in cardiovascular disease: a non-invasive approach for assessing inflammatory and oxidative stress,” Ph.D. dissertation (University of Groningen, 2007), http://dissertations.ub.rug.nl/faculties/medicine/2007/d.j.mulder/.

2007 (1)

D. J. Mulder, “Skin autofluorescence in cardiovascular disease: a non-invasive approach for assessing inflammatory and oxidative stress,” Ph.D. dissertation (University of Groningen, 2007), http://dissertations.ub.rug.nl/faculties/medicine/2007/d.j.mulder/.

2006 (2)

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

A. Lihachev and J. Spigulis, “Skin autofluorescence fading at 405/532 nm laser excitation,” in Northern Optics, 2006 (IEEE, 2006), pp. 63-65.
[CrossRef]

2003 (2)

K. König and I. Reinmann, “High--resolution multiphoton tomography of human skin with subcellular spatial resolution and picoseconds time resolution,” J Biomed. Opt. 8 (3), 432-439 (2003).
[CrossRef] [PubMed]

E. V. Salomatina and A.B. Pravdin, “Fluorescence dynamics of human epidermis (ex vivo) and skin (in vivo),” Proc. SPIE 5068, 405-410 (2003).
[CrossRef]

2002 (1)

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.

2001 (1)

A. A. Stratonnikov, V. S. Polikarpov, and V. B. Loschenov, “Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation,” Proc. SPIE 4241, 13-24 (2001).
[CrossRef]

2000 (1)

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

1999 (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Plenum, 1999).

1993 (1)

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Laser-induced changes in autofluorescence of in-vivo skin,” Proc. SPIE 1882, 278-290 (1993).
[CrossRef]

1988 (1)

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin: a potential marker of photoaging,” Arch. Dermatol. 124, 1514-1518 (1988).
[CrossRef] [PubMed]

1987 (2)

M. Tsuchida, T. Miura, and K. Aibara, “Lipofuscin and lipofuscin-like substances,” Chem. Phys. Lipids 44, 297-325 (1987).
[CrossRef] [PubMed]

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400-720 nm,” J. Invest. Dermatol. 89, 384-388 (1987).
[CrossRef] [PubMed]

1984 (2)

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

S. Kozikowsky, L. J. Wolfram, and R. R. Alfano, “Fluorescence spectroscopy of eumelanins,” IEEE J. Quantum Electron. QE-20, 1379-1382 (1984).
[CrossRef]

1982 (1)

R. R. Anderson and J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan and J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147-194.

1968 (1)

B. Chance, L. Mela, and D. Wong, “Flavoproteins of the respiratory chain,” in Flavins and Flavoproteins, K. Yagi, ed. (University Park Press, 1968), pp. 102-121.

Aibara, K.

M. Tsuchida, T. Miura, and K. Aibara, “Lipofuscin and lipofuscin-like substances,” Chem. Phys. Lipids 44, 297-325 (1987).
[CrossRef] [PubMed]

Alfano, M. A.

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

Alfano, R. R.

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

S. Kozikowsky, L. J. Wolfram, and R. R. Alfano, “Fluorescence spectroscopy of eumelanins,” IEEE J. Quantum Electron. QE-20, 1379-1382 (1984).
[CrossRef]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan and J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147-194.

Baqer, A. H.

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400-720 nm,” J. Invest. Dermatol. 89, 384-388 (1987).
[CrossRef] [PubMed]

Bilo, H. J.

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

Chance, B.

B. Chance, L. Mela, and D. Wong, “Flavoproteins of the respiratory chain,” in Flavins and Flavoproteins, K. Yagi, ed. (University Park Press, 1968), pp. 102-121.

Cordeo, J.

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

Deckelbaum, L. I.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin: a potential marker of photoaging,” Arch. Dermatol. 124, 1514-1518 (1988).
[CrossRef] [PubMed]

Gans, R. O.

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

Graaff, R.

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

Kollias, N.

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400-720 nm,” J. Invest. Dermatol. 89, 384-388 (1987).
[CrossRef] [PubMed]

König, K.

K. König and I. Reinmann, “High--resolution multiphoton tomography of human skin with subcellular spatial resolution and picoseconds time resolution,” J Biomed. Opt. 8 (3), 432-439 (2003).
[CrossRef] [PubMed]

Kozikowsky, S.

S. Kozikowsky, L. J. Wolfram, and R. R. Alfano, “Fluorescence spectroscopy of eumelanins,” IEEE J. Quantum Electron. QE-20, 1379-1382 (1984).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Plenum, 1999).

Ledvij, M.

M. Ledvij, “Curve fitting made easy,” Ind. Phys. 9 (2), 24-27 (April/May 2003).

Leffell, D. J.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin: a potential marker of photoaging,” Arch. Dermatol. 124, 1514-1518 (1988).
[CrossRef] [PubMed]

Lihachev, A.

A. Lihachev and J. Spigulis, “Skin autofluorescence fading at 405/532 nm laser excitation,” in Northern Optics, 2006 (IEEE, 2006), pp. 63-65.
[CrossRef]

Links, T. P.

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

Longo, F. W.

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

Loschenov, V. B.

A. A. Stratonnikov, V. S. Polikarpov, and V. B. Loschenov, “Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation,” Proc. SPIE 4241, 13-24 (2001).
[CrossRef]

Lui, H.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

Lutgers, H. L.

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

MacAulay, C.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

MacAulay, C. E.

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Laser-induced changes in autofluorescence of in-vivo skin,” Proc. SPIE 1882, 278-290 (1993).
[CrossRef]

McLean, D. I.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Laser-induced changes in autofluorescence of in-vivo skin,” Proc. SPIE 1882, 278-290 (1993).
[CrossRef]

Mela, L.

B. Chance, L. Mela, and D. Wong, “Flavoproteins of the respiratory chain,” in Flavins and Flavoproteins, K. Yagi, ed. (University Park Press, 1968), pp. 102-121.

Milstone, L. M.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin: a potential marker of photoaging,” Arch. Dermatol. 124, 1514-1518 (1988).
[CrossRef] [PubMed]

Miura, T.

M. Tsuchida, T. Miura, and K. Aibara, “Lipofuscin and lipofuscin-like substances,” Chem. Phys. Lipids 44, 297-325 (1987).
[CrossRef] [PubMed]

Mulder, D. J.

D. J. Mulder, “Skin autofluorescence in cardiovascular disease: a non-invasive approach for assessing inflammatory and oxidative stress,” Ph.D. dissertation (University of Groningen, 2007), http://dissertations.ub.rug.nl/faculties/medicine/2007/d.j.mulder/.

Palcic, B.

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Laser-induced changes in autofluorescence of in-vivo skin,” Proc. SPIE 1882, 278-290 (1993).
[CrossRef]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan and J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147-194.

Polikarpov, V. S.

A. A. Stratonnikov, V. S. Polikarpov, and V. B. Loschenov, “Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation,” Proc. SPIE 4241, 13-24 (2001).
[CrossRef]

Pravdin, A. B.

E. V. Salomatina and A.B. Pravdin, “Fluorescence dynamics of human epidermis (ex vivo) and skin (in vivo),” Proc. SPIE 5068, 405-410 (2003).
[CrossRef]

Reinmann, I.

K. König and I. Reinmann, “High--resolution multiphoton tomography of human skin with subcellular spatial resolution and picoseconds time resolution,” J Biomed. Opt. 8 (3), 432-439 (2003).
[CrossRef] [PubMed]

Salomatina, E. V.

E. V. Salomatina and A.B. Pravdin, “Fluorescence dynamics of human epidermis (ex vivo) and skin (in vivo),” Proc. SPIE 5068, 405-410 (2003).
[CrossRef]

Sinichkin, Y. P.

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.

Smit, A. J.

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

Spigulis, J.

A. Lihachev and J. Spigulis, “Skin autofluorescence fading at 405/532 nm laser excitation,” in Northern Optics, 2006 (IEEE, 2006), pp. 63-65.
[CrossRef]

Stetz, M. L.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin: a potential marker of photoaging,” Arch. Dermatol. 124, 1514-1518 (1988).
[CrossRef] [PubMed]

Stratonnikov, A. A.

A. A. Stratonnikov, V. S. Polikarpov, and V. B. Loschenov, “Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation,” Proc. SPIE 4241, 13-24 (2001).
[CrossRef]

Tata, D. B.

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

Tomashevsky, P.

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

Tsuchida, M.

M. Tsuchida, T. Miura, and K. Aibara, “Lipofuscin and lipofuscin-like substances,” Chem. Phys. Lipids 44, 297-325 (1987).
[CrossRef] [PubMed]

Tuchin, V. V.

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.

Ubink-Veltmaat, L. J.

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

Utz, S. R.

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.

Weisstein, E. W.

E. W. Weisstein, http://mathworld.wolfram.com/LeastSquaresFittingExponential.html.

Wolfram, L. J.

S. Kozikowsky, L. J. Wolfram, and R. R. Alfano, “Fluorescence spectroscopy of eumelanins,” IEEE J. Quantum Electron. QE-20, 1379-1382 (1984).
[CrossRef]

Wong, D.

B. Chance, L. Mela, and D. Wong, “Flavoproteins of the respiratory chain,” in Flavins and Flavoproteins, K. Yagi, ed. (University Park Press, 1968), pp. 102-121.

Zeng, H.

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Laser-induced changes in autofluorescence of in-vivo skin,” Proc. SPIE 1882, 278-290 (1993).
[CrossRef]

Zonios, G. I.

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.

Arch. Dermatol. (1)

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin: a potential marker of photoaging,” Arch. Dermatol. 124, 1514-1518 (1988).
[CrossRef] [PubMed]

Chem. Phys. Lipids (1)

M. Tsuchida, T. Miura, and K. Aibara, “Lipofuscin and lipofuscin-like substances,” Chem. Phys. Lipids 44, 297-325 (1987).
[CrossRef] [PubMed]

Diabetes Care (1)

H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescene as a noninvasive marker of vascular damage in patients with type 2 diabetes,” Diabetes Care 29, 2654 -2659 (2006).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

S. Kozikowsky, L. J. Wolfram, and R. R. Alfano, “Fluorescence spectroscopy of eumelanins,” IEEE J. Quantum Electron. QE-20, 1379-1382 (1984).
[CrossRef]

R. R. Alfano, D. B. Tata, J. Cordeo, P. Tomashevsky, F. W. Longo, and M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. QE-20, 1507-1511 (1984).
[CrossRef]

Ind. Phys. (1)

M. Ledvij, “Curve fitting made easy,” Ind. Phys. 9 (2), 24-27 (April/May 2003).

J Biomed. Opt. (1)

K. König and I. Reinmann, “High--resolution multiphoton tomography of human skin with subcellular spatial resolution and picoseconds time resolution,” J Biomed. Opt. 8 (3), 432-439 (2003).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400-720 nm,” J. Invest. Dermatol. 89, 384-388 (1987).
[CrossRef] [PubMed]

Proc. SPIE (4)

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, “Autofluorescence properties of skin and applications in dermatology,” Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

H. Zeng, C. E. MacAulay, B. Palcic, and D. I. McLean, “Laser-induced changes in autofluorescence of in-vivo skin,” Proc. SPIE 1882, 278-290 (1993).
[CrossRef]

E. V. Salomatina and A.B. Pravdin, “Fluorescence dynamics of human epidermis (ex vivo) and skin (in vivo),” Proc. SPIE 5068, 405-410 (2003).
[CrossRef]

A. A. Stratonnikov, V. S. Polikarpov, and V. B. Loschenov, “Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation,” Proc. SPIE 4241, 13-24 (2001).
[CrossRef]

Other (7)

A. Lihachev and J. Spigulis, “Skin autofluorescence fading at 405/532 nm laser excitation,” in Northern Optics, 2006 (IEEE, 2006), pp. 63-65.
[CrossRef]

R. R. Anderson and J. A. Parrish, “Optical properties of human skin,” in The Science of Photomedicine, J. D. Regan and J. A. Parrish, eds. (Plenum, New York, 1982), pp. 147-194.

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in-vivo,” in Handbook of Optical Biomedical Diagnostics, V.V.Tuchin, ed. (SPIE Press, 2002), pp. 725-785.

B. Chance, L. Mela, and D. Wong, “Flavoproteins of the respiratory chain,” in Flavins and Flavoproteins, K. Yagi, ed. (University Park Press, 1968), pp. 102-121.

E. W. Weisstein, http://mathworld.wolfram.com/LeastSquaresFittingExponential.html.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Plenum, 1999).

D. J. Mulder, “Skin autofluorescence in cardiovascular disease: a non-invasive approach for assessing inflammatory and oxidative stress,” Ph.D. dissertation (University of Groningen, 2007), http://dissertations.ub.rug.nl/faculties/medicine/2007/d.j.mulder/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Setup for imaging the tissue AF bleaching (fading) rates.

Fig. 2
Fig. 2

Algorithm of the image processing for fast AF bleaching analysis.

Fig. 3
Fig. 3

Scheme of the setup for hyperspectral imaging of the tissue AF bleaching.

Fig. 4
Fig. 4

Distribution of the fast AF bleaching rate ( τ 1 ) values across a 2 c m × 2 cm healthy skin area: (a) 405 nm laser excitation and (b) 532 nm laser excitation. The color scale (at right) represents τ 1 values in seconds, in multiples of 10.

Fig. 5
Fig. 5

Medium-pigmented skin nevi: (a) ordinary photography and (b) the 532 nm laser fluorescence bleaching rate image. The color scale at right represents τ 1 values in seconds in multiples of 10.

Fig. 6
Fig. 6

Hyperpigmented skin nevi: (a) ordinary photography and (b) the 532 nm laser fluorescence bleaching rate image. The color scale at right represents τ 1 values in seconds in multiples of 10.

Fig. 7
Fig. 7

Images of a medium pigmented skin nevi at 405 nm laser irradiation: (a) ordinary photography, (b) filtered 405 nm laser excited AF image, (c) image of the fast AF bleaching rates ( τ 1 ), (d) image of the slow AF bleaching rates ( τ 2 ).

Fig. 8
Fig. 8

Images of a medium pigmented nevi at (a)  532 nm laser irradiation, (b) filtered fluorescence image at 532 nm laser excitation, (c) fluorescence bleaching τ 1 rate image, (d)  532 nm laser fluorescence bleaching τ 2 rate image.

Fig. 9
Fig. 9

Images of a nail–skin interface: (a) photograph, (b) filtered fluorescence image at 405 nm excitation, (c) laser fluorescence fast bleaching rate image. The color scale represents τ 1 values in seconds in multiples of 10.

Fig. 10
Fig. 10

Images of a nail–skin interface: (a) photograph, (b) filtered fluorescence image at 532 nm excitation, (c) laser fluorescence fast bleaching rate image. The color scale represents τ 1 in seconds in multiples of 10.

Fig. 11
Fig. 11

Images of a medium-pigmented skin nevi at 405 nm excitation: (a) filtered fluorescence image, (b) the same image after spectral processing (pixels with more significant spectral differences relative to the center of nevi are darker), (c) AF fast bleaching rate image. The color scale represents τ 1 values in seconds in multiples of 10.

Fig. 12
Fig. 12

Emission spectra recorded at three different pixels of the 405 nm excited fast bleaching rate image of a skin nevi; see Fig. 11c.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , t ) = a exp ( t / τ 1 ) + b exp ( t / τ 2 ) + A ,

Metrics