Abstract

We present and demonstrate a swept source with a large coherence length using a quasi-phase continuous tuning (QPCT) technique. QPCT is a method of minimizing the phase shift per round trip with respect to the tunable filter so that the resonance of lasing becomes high, resulting in high finesse of lasing during a rapid sweep. The demonstrated swept source consists of a fiber ring extended cavity laser with a diffraction grating and a polygon scanner-based tunable filter configuration. The projected beam on the diffraction grating is expanded with a multiple of beam expanders to achieve high finesse of the filter. The source demonstrated an 18nm swept range at 1060nm wavelength, 28mm coherence length, and 6.2mW peak power at a 2.5kHz swept rate. OCT imaging results showed that a coherence length of 28mm enables the measurement of the axial length of a pig's eye with 20mm length in physical size.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  2. T. Olsen and M. Thorwest “Calibration of axial length measurements with the Zeiss IOLMaster,” J. Cataract Refract. Surg. 31, 1345-1350 (2005).
    [CrossRef] [PubMed]
  3. I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  5. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998 (2004).
    [PubMed]
  7. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  9. J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier-domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
    [CrossRef] [PubMed]
  10. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496-500 (2008).
    [CrossRef] [PubMed]
  11. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1 ?m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121-6139 (2007).
    [CrossRef] [PubMed]
  12. C. Chong, T.Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source,” Opt. Express 16, 21105-2118 (2008).
    [CrossRef] [PubMed]
  13. C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with High Linearity Sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
    [CrossRef]
  14. S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photonics Technol. Lett. 16, 293-295 (2004).
    [CrossRef] [PubMed]
  15. S. H. Yun, C. BoudouxG. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981-1983(2003).
    [CrossRef] [PubMed]
  16. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  17. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31, 760-762 (2006).
    [CrossRef] [PubMed]
  18. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12, 4822-4828(2004).
    [CrossRef] [PubMed]
  19. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier-domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  20. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652-10664(2005).
    [PubMed]

2008 (3)

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496-500 (2008).
[CrossRef] [PubMed]

C. Chong, T.Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source,” Opt. Express 16, 21105-2118 (2008).
[CrossRef] [PubMed]

C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with High Linearity Sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (3)

2004 (4)

2003 (4)

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Akiba, M.

Bell, J. A.

I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003).
[CrossRef] [PubMed]

Bilenca, A.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photonics Technol. Lett. 16, 293-295 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. BoudouxG. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

Bouma, B. E.

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Z. P.

Chinn, S. R.

Choma, M. A.

Chong, C.

de Boer, J. F.

El-Zaiat, Sy. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hong, Y. J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Iftimia, N.

Itoh, M.

Izatt, J.

Jung, W. G.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kielhorn, I.

I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003).
[CrossRef] [PubMed]

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496-500 (2008).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Madjarova, V. D.

Makita, S.

Miura, M.

Morosawa, A.

Nelson, J. S.

Olsen, T.

T. Olsen and M. Thorwest “Calibration of axial length measurements with the Zeiss IOLMaster,” J. Cataract Refract. Surg. 31, 1345-1350 (2005).
[CrossRef] [PubMed]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photonics Technol. Lett. 16, 293-295 (2004).
[CrossRef] [PubMed]

Pozonni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496-500 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rajan, M. S.

I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003).
[CrossRef] [PubMed]

Sakai, T.

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Spaide, R. F.

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496-500 (2008).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Subryan, V. B.

I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003).
[CrossRef] [PubMed]

Suzuki,

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

T.,

Taira, K.

Tearney, G. J.

Tesha, P. M.

I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003).
[CrossRef] [PubMed]

Thorwest, M.

T. Olsen and M. Thorwest “Calibration of axial length measurements with the Zeiss IOLMaster,” J. Cataract Refract. Surg. 31, 1345-1350 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

Yamanari, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zhang, J.

Am. J. Ophthalmol. (1)

R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146, 496-500 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Chong, A. Morosawa, and T. Sakai, “High speed wavelength-swept laser source with High Linearity Sweep for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 235-242 (2008).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. H. Yun, C. Boudoux, M. C. Pierce, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photonics Technol. Lett. 16, 293-295 (2004).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (2)

T. Olsen and M. Thorwest “Calibration of axial length measurements with the Zeiss IOLMaster,” J. Cataract Refract. Surg. 31, 1345-1350 (2005).
[CrossRef] [PubMed]

I. Kielhorn, M. S. Rajan, P. M. Tesha, V. B. Subryan, and J. A. Bell, “Clinical assessment of the Zeiss IOLMaster,” J. Cataract Refract. Surg. 29, 518-522 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Sy. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (10)

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977-2998 (2004).
[PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier-domain optical coherence tomography,” Opt. Express 12, 6033-6039 (2004).
[CrossRef] [PubMed]

Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1 ?m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

C. Chong, T.Suzuki, A. Morosawa, and T. Sakai, “Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source,” Opt. Express 16, 21105-2118 (2008).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12, 4822-4828(2004).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier-domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652-10664(2005).
[PubMed]

Opt. Lett. (3)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Mode-hop-free tuning and (b) concept model of QPCT.

Fig. 2
Fig. 2

Phase evolution of cavity modes and tunable filter.

Fig. 3
Fig. 3

Laser configuration: OC, optical circulator; PC, polarization controller; CP, fiber coupler.

Fig. 4
Fig. 4

Phase change over the tuning range.

Fig. 5
Fig. 5

Phase shift ratio over wavelegth range.

Fig. 6
Fig. 6

Filter bandwidth versus FSR of the tunable filter.

Fig. 7
Fig. 7

Temporal profile of the output power.

Fig. 8
Fig. 8

OCT system setup. BR, balanced receiver; PC, polarization controller.

Fig. 9
Fig. 9

Signal power at different depths.

Fig. 10
Fig. 10

2D image of the whole pig's eye.

Fig. 11
Fig. 11

1D signal of one A-line (solid line in Fig. 10).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d λ g d θ = d λ i d θ ,
H = cos θ c tan 2 θ c 1 · L 1 .
δ λ = 4 ln 2 λ a cos θ 0 π M w i ,
Δ λ = 4 a cos θ 0 · Δ θ e = 8 π a ( 1 w i / W ) cos θ 0 M N ,
F = 2 π 2 w i ln 2 N λ o ( 1 w i W ) .

Metrics