Abstract

Implantable optical technologies provide measurements of cerebral hemodynamic activity from freely behaving animals without movement constraint or anesthesia. In order to study state-dependent neural evoked responses and the consequential hemodynamic response, we simultaneously measured EEG and scattered light changes in chronically implanted rats. Recordings took place under freely behaving conditions, allowing us to compare the evoked responses across wake, sleep, and anesthetized states. The largest evoked electrical and optical responses occurred during quiet sleep compared to wake and REM sleep, while isoflurane anesthesia showed a large, late burst of electrical activity synchronized to the stimulus but an earlier optical response.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
    [CrossRef] [PubMed]
  2. J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
    [CrossRef] [PubMed]
  3. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
    [CrossRef] [PubMed]
  4. S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
    [CrossRef] [PubMed]
  5. L. M. Chen, R. M. Friedman, and A. W. Roe, “Optical imaging of SI topography in anesthetized and awake squirrel monkeys,” J. Neurosci. 25, 7648-7659 (2005).
    [CrossRef] [PubMed]
  6. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-290 (2005).
    [CrossRef] [PubMed]
  7. C. Chen-Bee, T. Agoncillo, Y. Xiong, and R. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 75, 4572-4586 (2007).
    [CrossRef]
  8. E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
    [CrossRef] [PubMed]
  9. M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
    [CrossRef] [PubMed]
  10. A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
    [CrossRef] [PubMed]
  11. M. Rojas, J. Navas, and D. Rector, “Evoked response potential markers for anesthetic and behavioral states,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 291, R189-R196(2006).
    [CrossRef]
  12. D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences between rat cortical columns,” Brain Res. 1047, 45-55 (2005).
    [CrossRef] [PubMed]
  13. J. Krueger and F. Obál, “A neuronal group theory of sleep function,” J. Sleep Res. 2, 63-69 (1993).
    [CrossRef] [PubMed]
  14. P. Maquet, “Functional neuroimaging of normal human sleep by positron emission tomography,” J. Sleep Res. 9, 207-231(2000).
    [CrossRef] [PubMed]
  15. G. Zoccoli, A. Walker, P. Lenzi, and C. Franzini, “The cerebral circulation during sleep: regulation mechanisms and functional implications,” Sleep Med, Rev. 6, 443-455 (2002).
    [CrossRef]
  16. Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842-1846 (1993).
    [PubMed]
  17. D. M. Rector and J. S. George, “Continuous image and electrophysiological recording with real time processing and control,” Methods 25, 151-163 (2001).
    [CrossRef]
  18. W. Penfield and H. H. Jasper, Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown, 1954).
  19. D. M. Rector, J. L. Schei, and M. J. Rojas, “Mechanisms underlying state dependent surface-evoked response patterns,” Neurosci. doi: 10.1016/j.neuroscience.2008.11.031.
  20. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
    [CrossRef]
  21. D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627(2005).
    [CrossRef] [PubMed]
  22. R. N. Pittman, “In vivo photometric analysis of hemoglobin,” Ann. Biomed. Eng. 14, 119-137 (1986).
    [CrossRef] [PubMed]
  23. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  24. K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
    [CrossRef] [PubMed]
  25. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” Oregon Medical Laser Company, http://omlc.ogi.edu/spectra/hemoglobin/index.html.

2008 (1)

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Chen-Bee, T. Agoncillo, Y. Xiong, and R. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 75, 4572-4586 (2007).
[CrossRef]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Rojas, J. Navas, and D. Rector, “Evoked response potential markers for anesthetic and behavioral states,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 291, R189-R196(2006).
[CrossRef]

2005 (4)

D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences between rat cortical columns,” Brain Res. 1047, 45-55 (2005).
[CrossRef] [PubMed]

L. M. Chen, R. M. Friedman, and A. W. Roe, “Optical imaging of SI topography in anesthetized and awake squirrel monkeys,” J. Neurosci. 25, 7648-7659 (2005).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-290 (2005).
[CrossRef] [PubMed]

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627(2005).
[CrossRef] [PubMed]

2003 (2)

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

G. Zoccoli, A. Walker, P. Lenzi, and C. Franzini, “The cerebral circulation during sleep: regulation mechanisms and functional implications,” Sleep Med, Rev. 6, 443-455 (2002).
[CrossRef]

2001 (1)

D. M. Rector and J. S. George, “Continuous image and electrophysiological recording with real time processing and control,” Methods 25, 151-163 (2001).
[CrossRef]

2000 (1)

P. Maquet, “Functional neuroimaging of normal human sleep by positron emission tomography,” J. Sleep Res. 9, 207-231(2000).
[CrossRef] [PubMed]

1999 (2)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
[CrossRef]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

1997 (1)

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

1993 (2)

J. Krueger and F. Obál, “A neuronal group theory of sleep function,” J. Sleep Res. 2, 63-69 (1993).
[CrossRef] [PubMed]

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842-1846 (1993).
[PubMed]

1990 (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

1986 (1)

R. N. Pittman, “In vivo photometric analysis of hemoglobin,” Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

1954 (1)

W. Penfield and H. H. Jasper, Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown, 1954).

Agoncillo, T.

C. Chen-Bee, T. Agoncillo, Y. Xiong, and R. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 75, 4572-4586 (2007).
[CrossRef]

Andermann, M. L.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Askew, S.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

Bacskai, B. J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

Baldwin, P.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Balkin, T. J.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Beaney, R. P.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Berwick, J.

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

Bleneky, G.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Boas, D. A.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Bouchard, M. B.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

Braun, A. R.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Brooks, D. J.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Buckingham, P.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Carson, R. E.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Carter, K. M.

D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences between rat cortical columns,” Brain Res. 1047, 45-55 (2005).
[CrossRef] [PubMed]

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627(2005).
[CrossRef] [PubMed]

Chen, L. M.

L. M. Chen, R. M. Friedman, and A. W. Roe, “Optical imaging of SI topography in anesthetized and awake squirrel monkeys,” J. Neurosci. 25, 7648-7659 (2005).
[CrossRef] [PubMed]

Chen-Bee, C.

C. Chen-Bee, T. Agoncillo, Y. Xiong, and R. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 75, 4572-4586 (2007).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Coffey, P.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

Dale, A. M.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Devonshire, I.

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

Devor, A.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
[CrossRef]

Dunn, A. K.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-290 (2005).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Frackowiak, R. S. J.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Franzini, C.

G. Zoccoli, A. Walker, P. Lenzi, and C. Franzini, “The cerebral circulation during sleep: regulation mechanisms and functional implications,” Sleep Med, Rev. 6, 443-455 (2002).
[CrossRef]

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
[CrossRef]

Friedman, R. M.

L. M. Chen, R. M. Friedman, and A. W. Roe, “Optical imaging of SI topography in anesthetized and awake squirrel monkeys,” J. Neurosci. 25, 7648-7659 (2005).
[CrossRef] [PubMed]

Frostig, R.

C. Chen-Bee, T. Agoncillo, Y. Xiong, and R. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 75, 4572-4586 (2007).
[CrossRef]

George, J. S.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627(2005).
[CrossRef] [PubMed]

D. M. Rector and J. S. George, “Continuous image and electrophysiological recording with real time processing and control,” Methods 25, 151-163 (2001).
[CrossRef]

Gibbs, J. M.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Guiou, M.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
[CrossRef]

Hatazawa, J.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Healy, M. J. R.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Heather, J. D.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Herold, S.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Herscovitch, P.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842-1846 (1993).
[PubMed]

Hou, Y.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

Jasper, H. H.

W. Penfield and H. H. Jasper, Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown, 1954).

Johnston, D.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

Jones, M.

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

Jones, T.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Krauss, G. W.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

Krueger, J.

J. Krueger and F. Obál, “A neuronal group theory of sleep function,” J. Sleep Res. 2, 63-69 (1993).
[CrossRef] [PubMed]

Lammertsma, A. A.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Leenders, K. L.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Lenzi, P.

G. Zoccoli, A. Walker, P. Lenzi, and C. Franzini, “The cerebral circulation during sleep: regulation mechanisms and functional implications,” Sleep Med, Rev. 6, 443-455 (2002).
[CrossRef]

Maquet, P.

P. Maquet, “Functional neuroimaging of normal human sleep by positron emission tomography,” J. Sleep Res. 9, 207-231(2000).
[CrossRef] [PubMed]

Martin, C.

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

Martindale, J.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

Mayhew, J.

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
[CrossRef]

Navas, J.

M. Rojas, J. Navas, and D. Rector, “Evoked response potential markers for anesthetic and behavioral states,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 291, R189-R196(2006).
[CrossRef]

Nemoto, M.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

Obál, F.

J. Krueger and F. Obál, “A neuronal group theory of sleep function,” J. Sleep Res. 2, 63-69 (1993).
[CrossRef] [PubMed]

Penfield, W.

W. Penfield and H. H. Jasper, Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown, 1954).

Perani, D.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Pittman, R. N.

R. N. Pittman, “In vivo photometric analysis of hemoglobin,” Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

Pouratian, N.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

Prahl, S.

S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” Oregon Medical Laser Company, http://omlc.ogi.edu/spectra/hemoglobin/index.html.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Rector, D.

M. Rojas, J. Navas, and D. Rector, “Evoked response potential markers for anesthetic and behavioral states,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 291, R189-R196(2006).
[CrossRef]

Rector, D. M.

D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences between rat cortical columns,” Brain Res. 1047, 45-55 (2005).
[CrossRef] [PubMed]

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627(2005).
[CrossRef] [PubMed]

D. M. Rector and J. S. George, “Continuous image and electrophysiological recording with real time processing and control,” Methods 25, 151-163 (2001).
[CrossRef]

D. M. Rector, J. L. Schei, and M. J. Rojas, “Mechanisms underlying state dependent surface-evoked response patterns,” Neurosci. doi: 10.1016/j.neuroscience.2008.11.031.

Redgrave, P.

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

Rhodes, C.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Roe, A. W.

L. M. Chen, R. M. Friedman, and A. W. Roe, “Optical imaging of SI topography in anesthetized and awake squirrel monkeys,” J. Neurosci. 25, 7648-7659 (2005).
[CrossRef] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
[CrossRef]

Rojas, M.

M. Rojas, J. Navas, and D. Rector, “Evoked response potential markers for anesthetic and behavioral states,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 291, R189-R196(2006).
[CrossRef]

Rojas, M. J.

D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences between rat cortical columns,” Brain Res. 1047, 45-55 (2005).
[CrossRef] [PubMed]

D. M. Rector, J. L. Schei, and M. J. Rojas, “Mechanisms underlying state dependent surface-evoked response patterns,” Neurosci. doi: 10.1016/j.neuroscience.2008.11.031.

Schei, J. L.

D. M. Rector, J. L. Schei, and M. J. Rojas, “Mechanisms underlying state dependent surface-evoked response patterns,” Neurosci. doi: 10.1016/j.neuroscience.2008.11.031.

Selbie, S.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Sheth, S.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

Skoch, J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

Spinks, T.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Tamura, M.

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842-1846 (1993).
[PubMed]

Toga, A. W.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

Topchiy, I. A.

D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences between rat cortical columns,” Brain Res. 1047, 45-55 (2005).
[CrossRef] [PubMed]

Ulbert, I.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Varga, M.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Verwick, J.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

Volegov, P. L.

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627(2005).
[CrossRef] [PubMed]

Vuksanovic, B.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

Walker, A.

G. Zoccoli, A. Walker, P. Lenzi, and C. Franzini, “The cerebral circulation during sleep: regulation mechanisms and functional implications,” Sleep Med, Rev. 6, 443-455 (2002).
[CrossRef]

Walker, M.

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Wesensten, N. J.

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Wise, R. J. S.

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

Xiong, Y.

C. Chen-Bee, T. Agoncillo, Y. Xiong, and R. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 75, 4572-4586 (2007).
[CrossRef]

Zheng, Y.

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

Zoccoli, G.

G. Zoccoli, A. Walker, P. Lenzi, and C. Franzini, “The cerebral circulation during sleep: regulation mechanisms and functional implications,” Sleep Med, Rev. 6, 443-455 (2002).
[CrossRef]

Am. J. Physiol. Regulatory Integrative Comp. Physiol. (1)

M. Rojas, J. Navas, and D. Rector, “Evoked response potential markers for anesthetic and behavioral states,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 291, R189-R196(2006).
[CrossRef]

Ann. Biomed. Eng. (1)

R. N. Pittman, “In vivo photometric analysis of hemoglobin,” Ann. Biomed. Eng. 14, 119-137 (1986).
[CrossRef] [PubMed]

Brain (2)

K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. R. Healy, J. M. Gibbs, R. J. S. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume, and oxygen utilization,” Brain 113, 27-47 (1990).
[CrossRef] [PubMed]

A. R. Braun, T. J. Balkin, N. J. Wesensten, R. E. Carson, M. Varga, P. Baldwin, S. Selbie, G. Bleneky, and P. Herscovitch, “Regional cerebral blood flow throughout the sleep-wake cycle: an H2O15 PET study,” Brain 120, 1173-1197 (1997).
[CrossRef] [PubMed]

Brain Res. (1)

D. M. Rector, I. A. Topchiy, K. M. Carter, and M. J. Rojas, “Local functional state differences between rat cortical columns,” Brain Res. 1047, 45-55 (2005).
[CrossRef] [PubMed]

Eur. J. Neurosci. (1)

M. Jones, I. Devonshire, J. Berwick, C. Martin, P. Redgrave, and J. Mayhew, “Altered neurovascular coupling during information-processing states,” Eur. J. Neurosci. 27, 2758-2772 (2008).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

J. Appl. Physiol. (1)

Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol. 75, 1842-1846 (1993).
[PubMed]

J. Biomed. Opt. (1)

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36-46 (1999).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

J. Berwick, C. Martin, J. Martindale, M. Jones, D. Johnston, Y. Zheng, P. Redgrave, and J. Mayhew, “Hemodynamic response in the unanesthetized rat: intrinsic optical imaging and spectroscopy of the barrel cortex,” J. Cereb. Blood Flow Metab. 22, 670-679 (2002).
[CrossRef] [PubMed]

J. Neurosci. (2)

L. M. Chen, R. M. Friedman, and A. W. Roe, “Optical imaging of SI topography in anesthetized and awake squirrel monkeys,” J. Neurosci. 25, 7648-7659 (2005).
[CrossRef] [PubMed]

C. Chen-Bee, T. Agoncillo, Y. Xiong, and R. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 75, 4572-4586 (2007).
[CrossRef]

J. Sleep Res. (2)

J. Krueger and F. Obál, “A neuronal group theory of sleep function,” J. Sleep Res. 2, 63-69 (1993).
[CrossRef] [PubMed]

P. Maquet, “Functional neuroimaging of normal human sleep by positron emission tomography,” J. Sleep Res. 9, 207-231(2000).
[CrossRef] [PubMed]

Methods (1)

D. M. Rector and J. S. George, “Continuous image and electrophysiological recording with real time processing and control,” Methods 25, 151-163 (2001).
[CrossRef]

NeuroImage (5)

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” NeuroImage 35, 89-104 (2007).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” NeuroImage 27, 279-290 (2005).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Verwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increase neural activity in brain,” NeuroImage 10, 304-326 (1999).
[CrossRef] [PubMed]

S. Sheth, M. Nemoto, M. Guiou, M. Walker, N. Pouratian, and A. W. Toga, “Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex,” NeuroImage 19, 884-894 (2003).
[CrossRef] [PubMed]

D. M. Rector, K. M. Carter, P. L. Volegov, and J. S. George, “Spatio-temporal mapping of rat whisker barrels with fast scattered light signals,” NeuroImage 26, 619-627(2005).
[CrossRef] [PubMed]

Neuron (1)

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Neurosci. (1)

D. M. Rector, J. L. Schei, and M. J. Rojas, “Mechanisms underlying state dependent surface-evoked response patterns,” Neurosci. doi: 10.1016/j.neuroscience.2008.11.031.

Sleep Med, Rev. (1)

G. Zoccoli, A. Walker, P. Lenzi, and C. Franzini, “The cerebral circulation during sleep: regulation mechanisms and functional implications,” Sleep Med, Rev. 6, 443-455 (2002).
[CrossRef]

Other (2)

W. Penfield and H. H. Jasper, Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown, 1954).

S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” Oregon Medical Laser Company, http://omlc.ogi.edu/spectra/hemoglobin/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A 1 mm diameter photodiode (A) was coupled to a 1 mm optical fiber encased in hypodermic tubing and covered with black epoxy. The distal end of the optical fiber was cut to 8 mm length, polished, and placed directly in contact with the cortical tissue to collect light from the cortex. To illuminate the tissue with 660 nm light, a LED (B) was cut down to a 1 mm width and covered with black epoxy. Rats (C) were implanted with a LED and photodiode pair that was placed over the right temporal ridge (T) and 3 mm caudal to bregma (B) with 3 mm between the LED and the photodiode. To assess behavioral state, EEG screw electrodes were implanted in the frontal and parietal lobes and a ground reference screw was placed in the occipital lobe (solid circles). Five additional screws served as anchors for the headstage (open circles). Neck EMG and EKG wires recorded muscle activity and heart rate.

Fig. 2
Fig. 2

Top trace, sensitivity of the optical signal to oxyhemoglobin changes as a function of wavelength, described by Eq. (A7), for varying initial oxygenated hemoglobin saturation conditions. At 660 nm , the optical signal is more sensitive to changes in deoxyhemoglobin with higher oxyhemoglobin saturation. The lower trace shows the sensitivity of the optical signal to changes in blood volume for varying initial oxygenated hemoglobin saturation conditions. At 660 nm , the optical signal is less sensitive to changes in blood volume with higher oxyhemoglobin saturation, described by Eq. (A11). An inset of the hemoglobin absorption curve is shown with a line drawn at 660 nm .

Fig. 3
Fig. 3

Sample evoked electrical responses from one animal for wake, sleep, and anesthetized states were averaged across stimuli and plotted across time. The vertical lines represent each stimulus in the burst. The ERP amplitude, measured from the first peak (P1) to the first trough (N1), was significantly larger during QS than during wake. During REM sleep, the ERP was similar in amplitude to the ERP during wake. Under isoflurane anesthesia, a small amplitude ERP appeared after the first stimulus followed by a late burst of activity synchronized to the stimulus. The lower inset panel demonstrates electrical recordings from a different rat using single click stimuli. The top trace shows several burst events that synchronize to the stimulus and are stacked on top of each other. The bottom trace shows the corresponding average of the bursts, which appears very similar to a late ERP but is unrelated to mechanisms that underlie the ERP [11]. The dotted line indicates the time of the stimulus.

Fig. 4
Fig. 4

Inverted evoked optical responses were averaged across wake, sleep, and anesthetized states and plotted across time in this example from one rat. The vertical lines represent each stimulus in the burst. To compare sleep state related responses, the wake, QS, and REM traces were normalized to the QS peak while the isoflurane trace was reported as fractional change from baseline, prestimulus conditions. An increase in the inverted signal corresponded to an increase in 660 nm light absorption (a decrease in reflected light) and an increase in deoxyhemoglobin/blood volume. The peak amplitude was larger during QS than wake and REM, but the trough amplitude did not significantly differ. Both the peak and the trough were shifted later in time during QS than wake, REM, and isoflurane.

Fig. 5
Fig. 5

Optical response traces from four animals for (A) wake, (B) QS, (C) REM, and (D) isoflurane. The peaks and troughs, marked by arrows, show the amplitude and timing trends. The variability between rats may be caused by different amounts of movement artifact and/or placement differences. During wake, rat 4 showed a large, late trough that may have been influenced by a movement artifact. Rat 3 showed thicker traces in QS and REM, as well as rat 4 during isoflurane due to decreased signal-to-noise in these recordings.

Fig. 6
Fig. 6

Peak amplitude versus time plotted for all four animals across states (A). The wake/sleep responses were normalized to the QS peak while the isoflurane response was reported as changes from baseline. The mean peak amplitudes and times are plotted with vertical and horizontal standard error bars, respectively. During QS, the peak amplitude was significantly larger compared to wake and REM. The QS peak was shifted significantly later in time compared to isoflurane. The trough amplitude versus time are plotted for all four animals across states along with the mean and standard error (circled region). Unlike the peak, the QS trough amplitude did not significantly differ between wake and REM, but it occurred significantly later in time compared to isoflurane. A plot of the optical amplitude (peak–trough) versus the ERP amplitude (P1-N1) for individual recordings is shown in B. Wake states exhibited lower amplitude ERP and optical responses while QS states exhibited larger ERP and optical amplitudes. Evoked responses during REM were similar in amplitude to wake responses, but experienced larger variations between animals. During isoflurane, the optical response was similar in amplitude to QS, and the synchronized burst amplitudes were similar to QS ERP amplitudes.

Tables (1)

Tables Icon

Table 1 Mean and Standard Error Values of the Electrical and Optical Responses from Four Animals a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 10 μ λ d ,
μ λ = ε λ HbO 2 c + ε λ Hb c .
A = log ( I 0 I ) ,
A = S ε λ HbO 2 c d + ( 1 S ) ε λ Hb c d ,
d A λ d S = ε λ HbO 2 c d ε λ Hb c d .
c d = A ( S ε λ HbO 2 + ( 1 S ) ε λ Hb ) .
d A λ d S = A ( ε λ HbO 2 ε λ Hb ) ( S ε λ HbO 2 + ( 1 S ) ε λ Hb ) ,
μ λ = ( 1 V ) μ tissue + V ( S ε λ HbO 2 c + ( 1 S ) ε λ Hb c ) ,
d A λ d V = μ tissue d + S ε λ HbO 2 c d + ( 1 S ) ε λ Hb c d ,
d = A [ 1 ( 1 V ) μ tissue + V S ε λ HbO 2 c + V ( 1 S ) ε λ Hb c ] .
d A λ d V = A ( μ tissue + S ε λ HbO 2 c + ( 1 S ) ε λ Hb c ) ( 1 V ) μ tissue + V S ε λ HbO 2 c + V ( 1 S ) ε λ Hb c ,

Metrics