Abstract

Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).
    [CrossRef] [PubMed]
  2. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
    [CrossRef] [PubMed]
  3. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
    [CrossRef]
  4. P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
    [CrossRef]
  5. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
    [CrossRef] [PubMed]
  6. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
    [CrossRef] [PubMed]
  7. B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
    [CrossRef]
  8. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
    [CrossRef]
  9. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000).
    [CrossRef]
  10. L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.
  11. V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000).
    [CrossRef] [PubMed]
  12. V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000).
    [CrossRef] [PubMed]
  13. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique,” Opt. Lett. 31, 471-473 (2006).
    [CrossRef] [PubMed]
  14. S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
    [CrossRef] [PubMed]
  15. A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.
  16. S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
    [CrossRef]
  17. T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).
  18. Two of the sources and one detector have later been disabled, so that only 253×254 source detector combinations are measured.
  19. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
    [CrossRef]
  20. S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  21. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
    [CrossRef] [PubMed]
  22. A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
    [CrossRef]
  23. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
    [CrossRef] [PubMed]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  25. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  26. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882-884 (1998).
    [CrossRef]
  27. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003).
    [CrossRef] [PubMed]
  28. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004).
    [CrossRef] [PubMed]
  29. B. Brendel and T. Nielsen, “Wavelength optimization in multispectral diffuse optical tomography considering uncertainties in absorption spectra,” in European Conference on Biomedical Optics (Optical Society of America, 2007), paper 6629_9.
  30. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
    [CrossRef] [PubMed]
  31. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
    [CrossRef] [PubMed]
  32. Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM Rev. 23, 444-466 (1981).
    [CrossRef]
  33. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471-481 (1970).
    [CrossRef] [PubMed]
  34. S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bull. Acad. Polon. Sci. Lett. A 35, 355-357 (1937).
  35. F. Natterer, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).
    [CrossRef]
  36. G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Trans. Med. Imaging 19, 548-555 (2000).
    [CrossRef] [PubMed]
  37. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691-701 (1995).
    [CrossRef] [PubMed]
  38. B. Brooksby, “Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment,” Ph.D. thesis (Thayer School of Engineering, Dartmouth College, 2005).
  39. This fraction is of course scan specific. For the simulation the fraction is 2.3%.
  40. R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).
  41. S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).
  42. S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).
  43. R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.
  44. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
    [CrossRef]
  45. R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).
  46. C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
    [CrossRef] [PubMed]
  47. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
    [CrossRef] [PubMed]

2008 (1)

A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.

2007 (4)

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

B. Brendel and T. Nielsen, “Wavelength optimization in multispectral diffuse optical tomography considering uncertainties in absorption spectra,” in European Conference on Biomedical Optics (Optical Society of America, 2007), paper 6629_9.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique,” Opt. Lett. 31, 471-473 (2006).
[CrossRef] [PubMed]

A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
[CrossRef]

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

2005 (10)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

B. Brooksby, “Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment,” Ph.D. thesis (Thayer School of Engineering, Dartmouth College, 2005).

2004 (3)

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

2003 (2)

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

2001 (2)

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
[CrossRef]

F. Natterer, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).
[CrossRef]

2000 (5)

G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Trans. Med. Imaging 19, 548-555 (2000).
[CrossRef] [PubMed]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000).
[CrossRef] [PubMed]

1999 (2)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

1998 (1)

1995 (1)

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691-701 (1995).
[CrossRef] [PubMed]

1993 (1)

S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

1988 (1)

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

1981 (1)

Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM Rev. 23, 444-466 (1981).
[CrossRef]

1978 (1)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

1970 (1)

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471-481 (1970).
[CrossRef] [PubMed]

1937 (1)

S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bull. Acad. Polon. Sci. Lett. A 35, 355-357 (1937).

Arpaia, F.

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

Arridge, S. R.

A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique,” Opt. Lett. 31, 471-473 (2006).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882-884 (1998).
[CrossRef]

S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Backer, L.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Bakker, L. P.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Beek, M. v.

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Bender, R.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471-481 (1970).
[CrossRef] [PubMed]

Boas, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Boas, D. A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

Brendel, B.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

B. Brendel and T. Nielsen, “Wavelength optimization in multispectral diffuse optical tomography considering uncertainties in absorption spectra,” in European Conference on Biomedical Optics (Optical Society of America, 2007), paper 6629_9.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Brooksby, B.

B. Brooksby, “Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment,” Ph.D. thesis (Thayer School of Engineering, Dartmouth College, 2005).

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Carpenter, C. M.

Censor, Y.

Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM Rev. 23, 444-466 (1981).
[CrossRef]

Cerussi, A. E.

A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
[CrossRef]

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Chaves, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Chen, N.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Choe, R.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Chorlton, M.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

Compton, M.

A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
[CrossRef]

Corlu, A.

Cronin, E. B.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

Culver, J. P.

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Currier, A. A.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Danesini, G.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

Deckers, S.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Dehghani, H.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Delpy, D. T.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Djeziri, S.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Dorn, O.

Douek, M.

A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.

Doyley, M.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Durduran, T.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Elias, S. G.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

Enfield, L. C.

A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.

Feuerabend, A.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Fleiszer, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Forero, J.

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Gebauer, B.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471-481 (1970).
[CrossRef] [PubMed]

Grosenick, D.

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Gullberg, G. T.

G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Trans. Med. Imaging 19, 548-555 (2000).
[CrossRef] [PubMed]

Habers, R.

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Hagen, A.

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

Hall, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Herman, G. T.

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471-481 (1970).
[CrossRef] [PubMed]

Hillman, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Hillman, E. M. C.

Hiraoka, M.

S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

Hsiang, D.

A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
[CrossRef]

Huang, M.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Ichalalene, Z.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Intes, X.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Jiang, H.

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691-701 (1995).
[CrossRef] [PubMed]

Jiang, S.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
[CrossRef]

Kaczmarz, S.

S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bull. Acad. Polon. Sci. Lett. A 35, 355-357 (1937).

Kaipio, J. P.

V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000).
[CrossRef] [PubMed]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Kaufman, P. A.

Koehler, T.

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Kogel, C.

Köhler, T.

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Kolehmainen, V.

M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, “Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique,” Opt. Lett. 31, 471-473 (2006).
[CrossRef] [PubMed]

V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000).
[CrossRef] [PubMed]

Kopans, D. B.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

Lee, K.

Leproux, A.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

Lesage, F.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Li, A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

Licha, K.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Lionheart, W. R. B.

Luijten, P.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

Macdonald, R.

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

Mali, W. P.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

Mark, M. v. d.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

McBride, T. O.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[CrossRef]

Meeuwse, J. P.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Mesurolle, B.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Miller, E. L.

Mincu, N.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Moesta, K. T.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Möller, M.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Moore, R. H.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Natterer, F.

F. Natterer, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).
[CrossRef]

Nielsen, T.

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

B. Brendel and T. Nielsen, “Wavelength optimization in multispectral diffuse optical tomography considering uncertainties in absorption spectra,” in European Conference on Biomedical Optics (Optical Society of America, 2007), paper 6629_9.

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
[CrossRef]

Österberg, U. L.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[CrossRef]

Paulsen, K. D.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691-701 (1995).
[CrossRef] [PubMed]

Pessel, M.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Pifferi, A.

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Pijkeren, D. v.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Pogue, B. W.

C. M. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. B. Weaver, S. P. Poplack, and P. A. Kaufman, “Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size,” Opt. Lett. 32, 933-935 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[CrossRef]

Polyzos, M.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Poplack, S. P.

Rafferty, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Rinneberg, H.

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Schipper, A.

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

Schippers, F.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Schlag, P. M.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

Schweiger,

S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Schweiger, M.

Shah, N.

A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
[CrossRef]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

Song, X.

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

Spinelli, L.

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

St. Jean, P.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Steinkellner, O.

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

Stott, J. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Stroszczynski, C.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

't Hooft, G.

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

't Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Taronim, P.

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

Toricelli, A.

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Tromberg, B.

A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
[CrossRef]

van Beek, M.

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

van de Ven, S. M.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

van der Linden, E. S.

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

van der Mark, M.

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

van der Mark, M. B.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

van der Voort, M.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Vauhkonen, M.

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000).
[CrossRef] [PubMed]

V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000).
[CrossRef] [PubMed]

Vine, H. S.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Voort, M. v. d.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Wabnitz, H.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Wang, X.

Wang, Y.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Wassermann, B.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Weaver, J. B.

Wells, W. A.

Wiethoff, A. J.

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

Willscher, C.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[CrossRef]

Wu, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

Xu, C.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Yodh, A. G.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Zacharopoulos, A.

Zeng, G. L.

G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Trans. Med. Imaging 19, 548-555 (2000).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256-258 (2004).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Ziegler, A.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Ziegler, R.

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

Acad. Radiol. (1)

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography softscan: intial results,” Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Appl. Opt. (2)

R. Ziegler, T. Nielsen, T. Köhler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom,” Appl. Opt. (to be published).

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Bull. Acad. Polon. Sci. Lett. A (1)

S. Kaczmarz, “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bull. Acad. Polon. Sci. Lett. A 35, 355-357 (1937).

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143-1158 (1999).
[CrossRef]

IEEE Trans. Med. Imaging (1)

G. L. Zeng and G. T. Gullberg, “Unmatched projector/backprojector pairs in an iterative reconstruction algorithm,” IEEE Trans. Med. Imaging 19, 548-555 (2000).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

Invest. Radiol. (1)

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Diffuse optical tomography of the breast: discrimination of malignant from benign breast tissue,” Invest. Radiol. (to be published).

J. Biomed. Opt. (3)

A. E. Cerussi, N. Shah, D. Hsiang, M. Compton, and B. Tromberg, “In vivo absorption, scattering and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11, 044005 01-16 (2006).
[CrossRef]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 24-33 (2005).
[CrossRef]

J. Theor. Biol. (1)

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471-481 (1970).
[CrossRef] [PubMed]

Med. Phys. (4)

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691-701 (1995).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235-247 (2003).
[CrossRef] [PubMed]

S. R. Arridge, Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Österberg, and K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693-2700 (2000).
[CrossRef]

Mol. Imaging Biol. (1)

S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. P. Bakker, M. B. van der Mark, W. P. Mali, and P. Luijten, “Spectroscopic diffuse optical tomography of the breast: initial validation study in a cyst model,” Mol. Imaging Biol. (to be published).

Opt. Express. (1)

V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, “Recovery of piecewise constant coefficients in optical diffusion tomography,” Opt. Express. 7, 468-480 (2000).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (8)

V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, “Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography,” Phys. Med. Biol. 45, 3267-3284 (2000).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

P. Taronim, A. Toricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469-2488 (2005).
[CrossRef]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

R. Ziegler, B. Brendel, A. Schipper, R. Habers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. theory and experiment,” Phys. Med. Biol. (to be published).

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys. Med. Biol. 50, 2489-2502 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

T. Nielsen, B. Brendel, T. Köhler, R. Ziegler, A. Ziegler, L. Backer, M. v. Beek, M. v. d. Mark, M. v. d. Voort, R. Habers, K. Licha, M. Pessel, F. Schippers, J. P. Meeuwse, A. Feuerabend, D. v. Pijkeren, and S. Deckers, “Image reconstruction and evaluation of system performance for optical fluorescence tomography,” Proc. SPIE 6431, 643107 (2007).

Radiology (1)

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: Optical differentiation with us-guided optical imaging reconstruction,” Radiology 57-66 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instrum. 72, 1817-1824 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256-265 (2000).
[CrossRef]

SIAM Rev. (1)

Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM Rev. 23, 444-466 (1981).
[CrossRef]

Other (10)

F. Natterer, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).
[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

R. Ziegler, T. Nielsen, T. Koehler, D. Grosenick, O. Steinkellner, A. Hagen, R. Macdonald, and H. Rinneberg, “Reconstruction of absorption and fluorescence contrast for scanning time-domain fluorescence mammography,” in Progress in Biomedical Optics and Imaging--Optical Tomography and Spectroscopy of Tissue VII, Vol. 8 (SPIE Press, 2007), pp. 64340H1-64340H11.

B. Brooksby, “Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment,” Ph.D. thesis (Thayer School of Engineering, Dartmouth College, 2005).

This fraction is of course scan specific. For the simulation the fraction is 2.3%.

L. P. Bakker, M. van der Mark, M. van Beek, M. van der Voort, G. 't Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, “Optical fluorescence imaging of breast cancer,” in Biomedical Optics Conference (Optical Society of America, 2006), p. SH 56.

Two of the sources and one detector have later been disabled, so that only 253×254 source detector combinations are measured.

A. P. Gibson, L. C. Enfield, M. Schweiger, S. R. Arridge, M. Douek, and J. C. Hebden, “3d optical mammography of the uncompressed breast,” in Biomedical Optics (Optical Society of America, 2008), paper BSuE14.

B. Brendel and T. Nielsen, “Wavelength optimization in multispectral diffuse optical tomography considering uncertainties in absorption spectra,” in European Conference on Biomedical Optics (Optical Society of America, 2007), paper 6629_9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Photograph of the DOT system. (b) Photograph of one measurement cup. (c) Sketch of the measurement cup. The source and detector fibers are mounted into the wall of the cup-shaped measurement chamber.

Fig. 2
Fig. 2

Typical histogram of raw data: (a) input data to the reconstruction algorithm for a clinical case (square symbols) and a simulation approximating this clinical case (plus markers). The phantom that was used in the simulations is shown in Fig. 3. (b) same data but this time the ratio of the breast scan and reference scan is used for the abscissa. It should be noted that there is a substantial difference between the transmitted intensities in the breast scan and the reference scan.

Fig. 3
Fig. 3

Sections of the x z plane through the measurement cup. (a) Absorption coefficient μ a of the numerical phantom that was used to simulate data. (b) Reconstructed absorption coefficient without shape estimation. (c) Estimated breast shape δ μ a ¯ f . (d) Reconstructed absorption coefficient with shape estimation. All images are shown on the same gray level scale, which ranges from 0.0017 mm 1 (black) to 0.004 mm 1 (white). A comparison of (b) and (d) shows that the breast shape estimation significantly improves the image quality.

Fig. 4
Fig. 4

Histogram of the reconstruction input data after the contribution from the breast shape has been subtracted (plus markers). Note that the scale on the abscissa is much smaller than in Fig. 2a, which shows that the internal structure of the breast contributes only little to the magnitude of the original raw data. The square symbols show the residual after image reconstruction. It has a standard deviation of 0.007.

Fig. 5
Fig. 5

Estimated breast attenuation (circles) versus the true breast attenuation from a series of simulations. The attenuation of the breast was varied from 80 m 1 to 160 m 1 in steps of 10 m 1 . The attenuation of the fluid was 95 m 1 and is marked in the graph by the crossing solid lines. This plot shows that even for a large difference between fluid and tissue attenuation the estimation using the Rytov approximation yields good results.

Fig. 6
Fig. 6

Reconstruction input data for two clinical cases. (For details see Subsection 6C.)

Fig. 7
Fig. 7

Sections of the x z plane through the measurement cup. In contrast to the numerical phantom shown in Fig. 3a, here different values are used for scattering of tissue ( μ s = 1.2 mm 1 ) and fluid ( μ s = 1.7 mm 1 ). (a) Absorption coefficient μ a of the numerical phantom that was used to simulate data. (b) Reconstructed absorption coefficient without shape estimation. (c) Estimated breast shape f . (d) Reconstructed absorption coefficient with shape estimation. The gray level scale ranges from 0.0017     mm 1 to 0.0041 mm 1 in all images. The difference in scattering leads to a slightly overestimated breast size and to a “ringing” artifact that follows the fluid/tissue interface. Still, the breast shape estimation significantly improves the image quality.

Fig. 8
Fig. 8

Reconstruction results of a phantom experiment that mimics the situation of the simulation of Fig. 3. (a) Schematic drawing of the experimental phantom used. The standard scattering fluid, the tissue fluid, and the lesion fluid all have different optical properties (for details see Subsection 6E). (b) Reconstruction result if no shape estimation is used, (c) result with shape estimation. The gray scale for both images ranges from 0.0017     mm 1 to 0.0041 mm 1 . The reconstruction with shape estimation has a better homogeneity of the tissue part of the phantom and shows the lesion more clearly compared to the reconstruction without shape estimation.

Fig. 9
Fig. 9

Example of a clinical case with a tumor. The left image shows the result of a T1-weighted contrast-enhanced MRI scan. The right image shows the optical reconstruction (gray level scale from 0 to 0.006     mm 1 ). The tumor is imaged as the bright structure with increased absorption slightly left of the center of the cup. The solid line shows the contour of the estimated breast shape at a level of 70%.

Fig. 10
Fig. 10

Example of a clinical case with a cyst. The left image shows a the result of a T1-weighted MRI scan. The right image shows the optical reconstruction (gray level scale from 0.006     mm 1 to 0.009     mm 1 ). The cyst has less absorption and scattering than the surrounding tissue and thus shows up as a dark area in the optical image. The solid line shows the contour of the estimated breast shape at a 70% level.

Fig. 11
Fig. 11

Overview of the cup and phantom geometry. The graph shows a section in the x z plane.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

· D Φ + μ a Φ = 1 v S ,
ln Φ br ( x d , x s ) Φ ref ( x d , x s ) = v Ω δ μ a ( x ) G ( x d , x ) G ( x , x s ) G ( x d , x s ) d Ω + v Ω δ D ( x ) G ( x d , x ) · G ( x , x s ) G ( x d , x s ) d Ω .
A y = b ,
b i = ln Φ br ( x d ( i ) , x s ( i ) ) Φ ref ( x d ( i ) , x s ( i ) ) ,
A i j = v w j G ( x j , x d ( i ) ) G ( x j , x s ( i ) ) G ( x d ( i ) , x s ( i ) ) ,
y ¯ = argmin y ( A y b 2 2 + | | By 2 2 ) .
y ¯ = argmin y ( | | A y b | | 2 2 + | | y | | 2 2 ) .
[ A , I ] ( y r ) = b ,
y j k + 1 = y j k + A i ( k ) j b i ( k ) l A i ( k ) l y l k r i ( k ) 1 + l A i ( k ) l 2 ,
r i ( k ) k + 1 = r i ( k ) k + b i ( k ) l A i ( k ) l y l k r i ( k ) 1 + l A i ( k ) l 2 ,
y j k + 1 = y j k + A ^ i ( k ) j b i ( k ) l A i ( k ) l y l k r i ( k ) 1 + l A i ( k ) l A ˜ i ( k ) l ,
r i ( k ) k + 1 = r i ( k ) k + b i ( k ) l A i ( k ) l y l k r i ( k ) 1 + l A i ( k ) l A ˜ i ( k ) l ,
A ^ i j = { A ˜ i j if     A ˜ i j < t i t i otherwise .
B j j = ξ center + ( ξ fiber ξ center ) e d j / s ,
A y s = b δ μ a ¯ A f .
F i = m = 1 N m + 1 N | b i ( λ m ) b i ( λ n ) | ,
c = i S F i i S j A i j ,
δ μ a ¯ = argmin μ ( b μ A f 2 2 ) .

Metrics