Abstract

We propose a method for skin translucency control of facial images. This is one of the important tasks in the reproduction of posters, TV commercials, movies, and so on. As the first step of processing, we extract the component maps of melanin, hemoglobin, and shading from skin color images by using our conventional method. The extracted shading component is controlled to change the translucency of the skin by simple kernel operations for the component. The efficiency for the change of translucency is confirmed by using the images of numerical and optical skin phantoms. The method is also applied into the real skin color image with the consideration of each component, and realistic change of skin translucency was observed from the resultant images synthesized by the proposed method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169-2176 (1999).
    [CrossRef]
  2. N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
    [CrossRef]
  3. N. Tsumura, T. Nakaguchi, N. Ojima, K. Takase, S. Okaguchi, K. Hori, and Y. Miyake, “Image-based control of skin melanin texture,” Appl. Opt. 45, 6626-6633 (2006).
    [CrossRef] [PubMed]
  4. H. W. Jensen, S. R. Marshner, M. Levoy, and P. Hanrahan, “A practical model of subsurface light transport,” ACM Trans. Graphics 20, 551-518 (2001).
  5. H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graphics 21, 576-581 (2002).
    [CrossRef]
  6. H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
    [CrossRef]
  7. X. Hao, T. Baby, and A. Varshney, “Interactive subsurface scattering for translucent meshes,” in Proceedings of the 2003 Symposium on Interactive 3D Graphics (ACM, 2003), pp. 75-82.
    [CrossRef]
  8. T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient rendering of local subsurface scattering,” in Pacific Graphics 2003 (2003), pp. 51-58.
  9. M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
    [CrossRef]
  10. H. W. Jensen, Realistic Image Synthesis Using Photon Mapping (Peters, 2001).

2006

2004

M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
[CrossRef]

2003

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

2002

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graphics 21, 576-581 (2002).
[CrossRef]

2001

H. W. Jensen, S. R. Marshner, M. Levoy, and P. Hanrahan, “A practical model of subsurface light transport,” ACM Trans. Graphics 20, 551-518 (2001).

1999

Akazaki, S.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Baby, T.

X. Hao, T. Baby, and A. Varshney, “Interactive subsurface scattering for translucent meshes,” in Proceedings of the 2003 Symposium on Interactive 3D Graphics (ACM, 2003), pp. 75-82.
[CrossRef]

Bekaert, P.

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient rendering of local subsurface scattering,” in Pacific Graphics 2003 (2003), pp. 51-58.

Buhler, J.

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graphics 21, 576-581 (2002).
[CrossRef]

Fuchs, C.

M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
[CrossRef]

Goesele, M.

M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
[CrossRef]

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

Haneishi, H.

Hanrahan, P.

H. W. Jensen, S. R. Marshner, M. Levoy, and P. Hanrahan, “A practical model of subsurface light transport,” ACM Trans. Graphics 20, 551-518 (2001).

Hao, X.

X. Hao, T. Baby, and A. Varshney, “Interactive subsurface scattering for translucent meshes,” in Proceedings of the 2003 Symposium on Interactive 3D Graphics (ACM, 2003), pp. 75-82.
[CrossRef]

Hori, K.

N. Tsumura, T. Nakaguchi, N. Ojima, K. Takase, S. Okaguchi, K. Hori, and Y. Miyake, “Image-based control of skin melanin texture,” Appl. Opt. 45, 6626-6633 (2006).
[CrossRef] [PubMed]

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Jensen, H. W.

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graphics 21, 576-581 (2002).
[CrossRef]

H. W. Jensen, S. R. Marshner, M. Levoy, and P. Hanrahan, “A practical model of subsurface light transport,” ACM Trans. Graphics 20, 551-518 (2001).

H. W. Jensen, Realistic Image Synthesis Using Photon Mapping (Peters, 2001).

Kautz, J.

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient rendering of local subsurface scattering,” in Pacific Graphics 2003 (2003), pp. 51-58.

Lang, J.

M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
[CrossRef]

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

Lensch, H.

M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
[CrossRef]

Lensch, H. P.

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

Levoy, M.

H. W. Jensen, S. R. Marshner, M. Levoy, and P. Hanrahan, “A practical model of subsurface light transport,” ACM Trans. Graphics 20, 551-518 (2001).

Mangor, M. A.

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

Marshner, S. R.

H. W. Jensen, S. R. Marshner, M. Levoy, and P. Hanrahan, “A practical model of subsurface light transport,” ACM Trans. Graphics 20, 551-518 (2001).

Mertens, T.

T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient rendering of local subsurface scattering,” in Pacific Graphics 2003 (2003), pp. 51-58.

Miyake, Y.

N. Tsumura, T. Nakaguchi, N. Ojima, K. Takase, S. Okaguchi, K. Hori, and Y. Miyake, “Image-based control of skin melanin texture,” Appl. Opt. 45, 6626-6633 (2006).
[CrossRef] [PubMed]

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169-2176 (1999).
[CrossRef]

Nabeshima, H.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Nakaguchi, T.

Ojima, N.

N. Tsumura, T. Nakaguchi, N. Ojima, K. Takase, S. Okaguchi, K. Hori, and Y. Miyake, “Image-based control of skin melanin texture,” Appl. Opt. 45, 6626-6633 (2006).
[CrossRef] [PubMed]

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Okaguchi, S.

Reeth, F. V.

T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient rendering of local subsurface scattering,” in Pacific Graphics 2003 (2003), pp. 51-58.

Sato, K.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Seidel, H.-P.

M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
[CrossRef]

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient rendering of local subsurface scattering,” in Pacific Graphics 2003 (2003), pp. 51-58.

Shimizu, H.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Shiraishi, M.

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Takase, K.

Tsumura, N.

N. Tsumura, T. Nakaguchi, N. Ojima, K. Takase, S. Okaguchi, K. Hori, and Y. Miyake, “Image-based control of skin melanin texture,” Appl. Opt. 45, 6626-6633 (2006).
[CrossRef] [PubMed]

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169-2176 (1999).
[CrossRef]

Varshney, A.

X. Hao, T. Baby, and A. Varshney, “Interactive subsurface scattering for translucent meshes,” in Proceedings of the 2003 Symposium on Interactive 3D Graphics (ACM, 2003), pp. 75-82.
[CrossRef]

ACM Trans. Graphics

H. W. Jensen, S. R. Marshner, M. Levoy, and P. Hanrahan, “A practical model of subsurface light transport,” ACM Trans. Graphics 20, 551-518 (2001).

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graphics 21, 576-581 (2002).
[CrossRef]

M. Goesele, H. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel, “DISCO: acquisition of translucent objects,” ACM Trans. Graphics 23, 835-844 (2004).
[CrossRef]

N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin,” ACM Trans. Graphics 22, 770-779 (2003).
[CrossRef]

Appl. Opt.

Comput. Graph. Forum

H. P. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Mangor, J. Lang, and H.-P. Seidel, “Interactive rendering of translucent objects,” Comput. Graph. Forum 22, 195-206 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Other

H. W. Jensen, Realistic Image Synthesis Using Photon Mapping (Peters, 2001).

X. Hao, T. Baby, and A. Varshney, “Interactive subsurface scattering for translucent meshes,” in Proceedings of the 2003 Symposium on Interactive 3D Graphics (ACM, 2003), pp. 75-82.
[CrossRef]

T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel, “Efficient rendering of local subsurface scattering,” in Pacific Graphics 2003 (2003), pp. 51-58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Separation of two images with different polarizing filters into specular, shading, melanin, and hemoglobin components based on our previous method.

Fig. 2
Fig. 2

Estimation of irradiance by deconvolving the point spread function (PSF) of the medium. The new shading component is simply calculated by convolution between the estimated irradiance and another PSF.

Fig. 3
Fig. 3

Physical validity of the proposed control of translucency. (a) Optical skin phantoms prepared by changing the scattering coefficients of the medium. The particles of foundation used in cosmetic material are induced into the silicon to change the scattering coefficient. The induced foundation is 0.05%, 0.2%, 0.15%, 0.1%, and 0.5% from left to right. (b) Images of the phantoms. The change of translucency can be seen with the change of the amount of induced foundation. (c) The resultant syntheses for 0.2%, 0.15%, 0.1%, and 0.05% PSFs for a real image of 0.5% density. (d) PSF for each phantom.

Fig. 4
Fig. 4

Imaging system to take the image of the phantoms.

Fig. 5
Fig. 5

Result of deconvolution for the image of the 0.5% phantom by using the PSF measurement.

Fig. 6
Fig. 6

Numerical validity of the proposed control of translucency. (a) Numerical skin phantoms prepared by changing the scattering coefficients of the medium. (b) The resultant syntheses from a rendered image of high scattering medium and its PSF into synthesized images by using their own simulated PSFs. (c) The difference image between images in (a) and (b).

Fig. 7
Fig. 7

Cross section of the luminance profile in Fig. 3. Original image with high scattering is changed into the synthesized images to compare the rendered images.

Fig. 8
Fig. 8

Effect of the proposed method on skin pattern image: (a) original image, (b) deconvolved image for shading components, (c) convolved image for the shading component, (d) convolved image for all RGB components in the color image.

Fig. 9
Fig. 9

Effect of the proposed method on facial image: (a) original image, (b) deconvolved image for shading components, (c) convolved image for the shading component, (d) convolved image for all RGB components in the color image.

Fig. 10
Fig. 10

Four skin images used in the subjective experiment for skin translucency.

Fig. 11
Fig. 11

Example of changing the components of the skin. The original images are in the middle column.

Fig. 12
Fig. 12

Results of the subjective experiments. The horizontal axis indicates the increase or decrease of each component. The vertical axis indicates the observer rating value for increase of skin translucency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c = B 1 v d log ,
Sh ( x , y ) = L ( x , y ) K ( x , y ; x , y ) d x d y .
Sh ( x , y ) = L ( x , y ) PSF ( x x , y y ) d x d y .

Metrics