Abstract

We describe a parallel scan spectral surface plasmon resonance (SPR) imaging technique. We demonstrate experimentally, with a line-shaped light illumination, that an image acquired with an area CCD detector provides both SPR wavelength information and one-dimensional spatial distribution. Thus two-dimensional distribution of the refractive index of the entire sensing plane can be obtained with a one-dimensional optical line parallel scan. The technique offers advantages of both high sensitivity and high throughput, and could have potential applications in biochips analysis.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  2. Z. L. Sun, Y. H. He, and J. H. Guo, “Surface plasmon resonance sensor based on polarization interferometry and angle modulation,” Appl. Opt. 45, 3071-3076 (2006).
    [CrossRef] [PubMed]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  4. M. J. O'Brien II, V. H. Perez-Luna, S. R. J. Brueck, and G. P. Lopez, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosen. Bioelectron. 16, 97-108 (2001).
    [CrossRef]
  5. E. Fu, S. Ramsey, R. Thariani, and P. Yager, “One-dimensional surface plasmon resonance imaging system using wavelength interrogation,” Rev. Sci. Instrum. 77, 076106 (2006).
    [CrossRef]
  6. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615-617 (1988).
    [CrossRef]
  7. J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
    [CrossRef]
  8. J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
    [CrossRef] [PubMed]
  9. J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
    [CrossRef] [PubMed]
  10. S. Otsuki, K. Tamada, and S. Wakida, “Wavelength-scanning surface plasmon resonance imaging,” Appl. Opt. 44, 3468-3472 (2005).
    [CrossRef] [PubMed]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  12. J. S. Maier, S. A. Walker, S. Fantini, M. A. Fanceschini, and E. Gratton, “Possible correlation between blood-glucose concentration and the reduced scattering coefficient of tissues in the near-infrared,” Opt. Lett. 19, 2062-2064 (1994).
    [CrossRef] [PubMed]
  13. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207-211 (1997).
    [CrossRef]

2006 (3)

E. Fu, S. Ramsey, R. Thariani, and P. Yager, “One-dimensional surface plasmon resonance imaging system using wavelength interrogation,” Rev. Sci. Instrum. 77, 076106 (2006).
[CrossRef]

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

Z. L. Sun, Y. H. He, and J. H. Guo, “Surface plasmon resonance sensor based on polarization interferometry and angle modulation,” Appl. Opt. 45, 3071-3076 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

2003 (2)

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

2001 (1)

M. J. O'Brien II, V. H. Perez-Luna, S. R. J. Brueck, and G. P. Lopez, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosen. Bioelectron. 16, 97-108 (2001).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1997 (1)

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

1994 (1)

1988 (1)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615-617 (1988).
[CrossRef]

Brueck, S. R. J.

M. J. O'Brien II, V. H. Perez-Luna, S. R. J. Brueck, and G. P. Lopez, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosen. Bioelectron. 16, 97-108 (2001).
[CrossRef]

Fanceschini, M. A.

Fantini, S.

Fu, E.

E. Fu, S. Ramsey, R. Thariani, and P. Yager, “One-dimensional surface plasmon resonance imaging system using wavelength interrogation,” Rev. Sci. Instrum. 77, 076106 (2006).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gratton, E.

Guo, J. H.

Ha, K. S.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

Han, J. A.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

He, Y. H.

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

Hong, D. G.

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

Jung, J. W.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

Jung, S. H.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

Kim, H. S.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

Kim, P. H.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

Kim, Y. M.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615-617 (1988).
[CrossRef]

Lee, H. G.

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

Lee, H. J.

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

Lopez, G. P.

M. J. O'Brien II, V. H. Perez-Luna, S. R. J. Brueck, and G. P. Lopez, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosen. Bioelectron. 16, 97-108 (2001).
[CrossRef]

Maier, J. S.

O'Brien, M. J.

M. J. O'Brien II, V. H. Perez-Luna, S. R. J. Brueck, and G. P. Lopez, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosen. Bioelectron. 16, 97-108 (2001).
[CrossRef]

Otsuki, S.

Park, J. B.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

Perez-Luna, V. H.

M. J. O'Brien II, V. H. Perez-Luna, S. R. J. Brueck, and G. P. Lopez, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosen. Bioelectron. 16, 97-108 (2001).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Ramsey, S.

E. Fu, S. Ramsey, R. Thariani, and P. Yager, “One-dimensional surface plasmon resonance imaging system using wavelength interrogation,” Rev. Sci. Instrum. 77, 076106 (2006).
[CrossRef]

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615-617 (1988).
[CrossRef]

Sun, Z. L.

Tamada, K.

Thariani, R.

E. Fu, S. Ramsey, R. Thariani, and P. Yager, “One-dimensional surface plasmon resonance imaging system using wavelength interrogation,” Rev. Sci. Instrum. 77, 076106 (2006).
[CrossRef]

Wakida, S.

Walker, S. A.

Yager, P.

E. Fu, S. Ramsey, R. Thariani, and P. Yager, “One-dimensional surface plasmon resonance imaging system using wavelength interrogation,” Rev. Sci. Instrum. 77, 076106 (2006).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Yi, S. J.

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

Yuk, J. S.

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biosen. Bioelectron. (1)

M. J. O'Brien II, V. H. Perez-Luna, S. R. J. Brueck, and G. P. Lopez, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosen. Bioelectron. 16, 97-108 (2001).
[CrossRef]

Nature (1)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615-617 (1988).
[CrossRef]

Opt. Lett. (1)

Proteomics (2)

J. S. Yuk, S. H. Jung, J. W. Jung, D. G. Hong, J. A. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor,” Proteomics 4, 3468-3476(2004).
[CrossRef] [PubMed]

J. W. Jung, S. H. Jung, H. S. Kim, J. S. Yuk, J. B. Park, Y. M. Kim, J. A. Han, P. H. Kim, and K. S. Ha, “High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor,” Proteomics 6, 1110-1120 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. Fu, S. Ramsey, R. Thariani, and P. Yager, “One-dimensional surface plasmon resonance imaging system using wavelength interrogation,” Rev. Sci. Instrum. 77, 076106 (2006).
[CrossRef]

Sens. Actuators B (3)

J. S. Yuk, S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha, “Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips,” Sens. Actuators B 94, 161-164 (2003).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a parallel scan spectral SPR imaging device: A, white light point source; B, achromatic convex lens; C, polarizer; D, cylindrical convex lens; E, Kretschmann type SPR module (E1, prism; E2, gold film, where a refractive index distribution model of different concentrations of glucose solution is arranged on the gold film; E3, one-dimensional translation stage); F, G, H, I, spectrometers; J, CCD camera.

Fig. 2
Fig. 2

(a) Darker curve A is a plotted row from the p-polarized image; the lighter curve B is the corresponding row from the s-polarized image. (b) The measured ratio of the grating efficiency for s polarization and for p polarization. (c) the lighter curve C is A divided by B in (a); the darker curve D is C divided by the curve in (b) and is thus the SPR spectrum ( | R p ( λ ) | 2 / | R s ( λ ) | 2 ).

Fig. 3
Fig. 3

(a) Refractive index distribution model. (b) A typical image captured by CCD after a compensating spectral response of the system. Each row represents the SPR spectrum | R p ( λ ) | 2 / | R s ( λ ) | 2 of one point in the sensing plane. The darker bands represent the glucose solution droplets. The white bands represent the air region. (c) The intensity of three typical rows from each darker band in (b).

Fig. 4
Fig. 4

(a) Image of refractive index distribution of the sensing model, with nine glucose solution droplets of three different concentrations: 0 g / L , 2 g / L , 4 g / L , where corresponding refractive indices are 1.3250, 1.3253, 1.3256. The distribution is the following: first row, 0 g / L , 2 g / L , 4 g / L ; second row, 2 g / L , 4 g / L , 2 g / L ; third row, 4 g / L , 2 g / L , 0 g / L . (b) The plotted dashed row in (a), which is across the glucose solution droplets. The RI of the background (air 1.0003 RIU) is out of the sensing range (1.3217–1.3262 in this experiment), so the intensity of this area is set to minimum.

Fig. 5
Fig. 5

(a) Sensing image of a gold film with air medium; the standard deviation of SPR wavelength is 0.38 nm . Experimental conditions are the following: BK7 glass prism, 2 nm Cr film, 40 nm gold film, sensing target is air. (b) Plotted row A of (a). (c) Plotted column B of (a).

Fig. 6
Fig. 6

Variation of SPR wavelength of a fixed point in a sensing plane within 2 hours; the standard deviation of SPR wavelength is 0.086 nm . Experimental conditions are the following: BK7 glass prism, 2 nm Cr film, 40 nm gold film, sensing target is air.

Fig. 7
Fig. 7

(a) 2-D SPR wavelength map of a gold film scratched by a needle tip. Experimental conditions are the following: BK7 glass prism, 2 nm Cr film, 40 nm gold film, sensing target is air. (b) The enlarged marked area in (a). (c) Partially plotted column A of (b). (d) Partially plotted row B of (b). (e) A microscopic picture of the marked square area in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ n = δ λ S n ,

Metrics