Abstract

Biliary tree structures are embedded in adipose tissue and, therefore, cannot be visualized directly by the surgeon during cholecystectomy operations. This can lead to inadvertent injuries with serious complications for the patient. Computational studies were performed to assess the feasibility of noninvasively localizing these structures from spectrally resolved near-infrared reflectance measurements. Methodologies were developed for vessel localization, both on the adipose tissue surface and depthwise, by use of semi-infinite and two-layer models of diffuse photon propagation in tissues, respectively. The simulation results, along with some preliminary experimental measurements on tissue-simulating phantoms, prove the feasibility of these methods and show promise for their future clinical application.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Hoelen, F. F. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648-650 (1998).
    [CrossRef]
  2. R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
    [CrossRef]
  3. B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
    [CrossRef]
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361-1367(2003).
    [CrossRef]
  5. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
    [CrossRef]
  6. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
    [CrossRef]
  7. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
    [CrossRef]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
    [CrossRef]
  9. B. Brooksby, S. Srinivasan, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005).
    [CrossRef]
  10. V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
    [CrossRef]
  11. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669-1678(2007).
    [CrossRef]
  12. N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
    [CrossRef]
  13. A. V. Bykov, A.V.Priezzhiev, and R.Myllyla, “Spatial resolved diffuse reflection as a tool for determination of size and embedding depth of blood vessels,” Proc. SPIE 6629, 66291P(2007).
  14. S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007).
    [CrossRef]
  15. I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007).
    [CrossRef]
  16. D. Piao, H. Xie, W. L. Zhang, J. S. Krasinski, G. L. Zhang, H. Dehghani, and B. W. Pogue, “Endoscopic, rapid near-infrared optical tomography,” Opt. Lett. 31, 2876-2878(2006).
    [CrossRef]
  17. K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
    [CrossRef]
  18. E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).
  19. D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).
  20. R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).
  21. J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).
  22. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159-170 (2002).
  23. R. Chamberlain and L. H. S. Blumgart, Hepatobiliary Surgery, (Landes Bioscience, 2003), Chap. 1, pp. 1-10.
  24. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).
  25. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
    [CrossRef]
  26. A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, “Influence of cell shape and aggregate formation on the optical properties of flowing whole blood,” Appl. Opt. 42, 1384-1394 (2003).
    [CrossRef]
  27. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
    [CrossRef]
  28. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304-2314 (1996).
  29. D. J. Maitland, J. T. Walsh, and J. B. Prystowsky, “Optical properties of human gallbladder tissue and bile,” Appl. Opt. 32, 586-591 (1993).
  30. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699-6710(1994).
  31. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).
  32. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef]
  33. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341(2003).
    [CrossRef]
  34. R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).
  35. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).
  36. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810-3821 (2001).
    [CrossRef]
  37. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401-7409 (1998).
    [CrossRef]
  38. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689-2702 (1999).
    [CrossRef]

2007 (9)

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef]

A. V. Bykov, A.V.Priezzhiev, and R.Myllyla, “Spatial resolved diffuse reflection as a tool for determination of size and embedding depth of blood vessels,” Proc. SPIE 6629, 66291P(2007).

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007).
[CrossRef]

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007).
[CrossRef]

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669-1678(2007).
[CrossRef]

2006 (2)

D. Piao, H. Xie, W. L. Zhang, J. S. Krasinski, G. L. Zhang, H. Dehghani, and B. W. Pogue, “Endoscopic, rapid near-infrared optical tomography,” Opt. Lett. 31, 2876-2878(2006).
[CrossRef]

D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).

2005 (4)

2004 (1)

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

2003 (6)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361-1367(2003).
[CrossRef]

R. Chamberlain and L. H. S. Blumgart, Hepatobiliary Surgery, (Landes Bioscience, 2003), Chap. 1, pp. 1-10.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, “Influence of cell shape and aggregate formation on the optical properties of flowing whole blood,” Appl. Opt. 42, 1384-1394 (2003).
[CrossRef]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339-2341(2003).
[CrossRef]

2002 (2)

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159-170 (2002).

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

2001 (1)

2000 (1)

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

1999 (2)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689-2702 (1999).
[CrossRef]

1998 (3)

1996 (1)

1994 (3)

1993 (2)

D. J. Maitland, J. T. Walsh, and J. B. Prystowsky, “Optical properties of human gallbladder tissue and bile,” Appl. Opt. 32, 586-591 (1993).

R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).

1990 (1)

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).

Aizu, Y.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007).
[CrossRef]

Alexander, G.

D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).

Alexandrakis, G.

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810-3821 (2001).
[CrossRef]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401-7409 (1998).
[CrossRef]

Andersson-Engels, S.

Arridge, S. R.

Aruna, P.

Bays, R.

Behbehani, K.

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

Bitton, R.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

Blumgart, L. H. S.

R. Chamberlain and L. H. S. Blumgart, Hepatobiliary Surgery, (Landes Bioscience, 2003), Chap. 1, pp. 1-10.

Boas, D. A.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159-170 (2002).

Boe, B.

D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).

Boverman, G.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Brooks, D. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Brooksby, B.

Buell, J. F.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Busch, D. R.

Butler, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

Bykov, A. V.

A. V. Bykov, A.V.Priezzhiev, and R.Myllyla, “Spatial resolved diffuse reflection as a tool for determination of size and embedding depth of blood vessels,” Proc. SPIE 6629, 66291P(2007).

Carp, S. A.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Cerussi, A.

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007).
[CrossRef]

Chamberlain, R.

R. Chamberlain and L. H. S. Blumgart, Hepatobiliary Surgery, (Landes Bioscience, 2003), Chap. 1, pp. 1-10.

Chance, B.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

Chen, Z.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Choe, R.

Coan, B.

E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).

Corlu, A.

Cronin, D. C.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Culver, J. P.

Davis, S. C.

de Mul, F. F.

Dehghani, H.

Dekker, A.

Dognitz, N.

Dunn, A. K.

Durduran, T.

Enejder, A. M. K.

Fang, Q.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Fantini, S.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef]

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Faris, G. W.

Farrell, T. J.

Feng, T. C.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).

R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).

Fishkin, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361-1367(2003).
[CrossRef]

Funaki, B.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Glanzmann, T.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689-2702 (1999).
[CrossRef]

Gotz, L.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Gratton, E.

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007).
[CrossRef]

Haskell, R. C.

R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).

Hawkins, D.

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

Heffer, E. L.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Heinig, A.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Heywang-Kobrunner, S.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Hibst, R.

Hillman, E. M. C.

Hoelen, C. G.

Holboke, M. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

Jiang, S. D.

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef]

B. Brooksby, S. Srinivasan, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Kepshire, D. S.

Kidney, D.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

Kienle, A.

Koffron, A.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Kogel, C.

B. Brooksby, S. Srinivasan, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Kolzer, J.

Kopans, D. B.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Krasinski, J. S.

Kukreti, S.

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007).
[CrossRef]

Lee, K.

Leef, J.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Li, B.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Li, M. L.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

Li, X.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

Lilge, L.

Liu, N.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef]

Livingston, E. H.

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).

Lo, A.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Lynch, J.

R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).

Maeda, T.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007).
[CrossRef]

Maitland, D. J.

Majaron, B.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Mattie, A.

R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).

Mcadams, M. S.

R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).

Miller, E. L.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Miller, J. A.

E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).

Millis, J. M.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Milner, T. E.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Mitic, G.

Moore, R. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Myllyla, R.

A. V. Bykov, A.V.Priezzhiev, and R.Myllyla, “Spatial resolved diffuse reflection as a tool for determination of size and embedding depth of blood vessels,” Proc. SPIE 6629, 66291P(2007).

Naik, S. C.

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

Nelson, J. S.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Niizeki, K.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007).
[CrossRef]

Nishidate, I.

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007).
[CrossRef]

Orlando, R.

R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).

Osborne, D. A.

D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).

Otto, J.

Patterson, M. S.

Paulsen, K. D.

Pera, V. E.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Piao, D.

Plies, E.

Pogue, B. W.

Pongers, R.

Poplack, S. P.

B. Brooksby, S. Srinivasan, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).

Priezzhiev, A. V.

A. V. Bykov, A.V.Priezzhiev, and R.Myllyla, “Spatial resolved diffuse reflection as a tool for determination of size and embedding depth of blood vessels,” Proc. SPIE 6629, 66291P(2007).

Prystowsky, J. B.

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

Rege, R. V.

E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).

Ren, H.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Russell, J. C.

R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).

Sassaroli, A.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef]

Schutz, O.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Schweiger, M.

Selb, J.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

Shah, N.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

Shung, K. K.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

Siebold, H.

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

Soho, S.

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Solkner, G.

Srinivasan, S.

B. Brooksby, S. Srinivasan, S. D. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett. 30, 1968-1970 (2005).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Steiner, R.

Stoica, G.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

Stott, J. J.

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).

R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).

Swartling, J.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Tromberg, B.

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007).
[CrossRef]

Tromberg, B. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).

Tsay, T. T.

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727-2741 (1994).

R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).

van den Bergh, H.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).

Viator, J. A.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Wagnieres, G.

Walsh, J. T.

Wang, L. V.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

Weaver, J.

Wilson, B. C.

Xie, H.

Yodh, A. G.

Yoshida, A.

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Zemp, R. J.

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

Zervos, E. E.

D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).

Zhang, G. L.

Zhang, W. L.

Zhao, Y.

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

Zinth, W.

Zuzak, K. J.

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

Anal. Chem. (1)

K. J. Zuzak, S. C. Naik, G. Alexandrakis, D. Hawkins, K. Behbehani, and E. H. Livingston, “Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery,” Anal. Chem. 79, 4709-4715(2007).
[CrossRef]

Appl. Opt. (10)

D. J. Maitland, J. T. Walsh, and J. B. Prystowsky, “Optical properties of human gallbladder tissue and bile,” Appl. Opt. 32, 586-591 (1993).

G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699-6710(1994).

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401-7409 (1998).
[CrossRef]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304-2314 (1996).

A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
[CrossRef]

G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810-3821 (2001).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt. 44, 1858-1869 (2005).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef]

A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, “Influence of cell shape and aggregate formation on the optical properties of flowing whole blood,” Appl. Opt. 42, 1384-1394 (2003).
[CrossRef]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669-1678(2007).
[CrossRef]

Arch. Surg. (2)

R. Orlando 3rd, J. C. Russell, J. Lynch, and A. Mattie, “Laparoscopic cholecystectomy. A statewide experience. The Connecticut Laparoscopic Cholecystectomy Registry,” Arch. Surg. 128, 494-499 (1993).

J. F. Buell, D. C. Cronin, B. Funaki, A. Koffron, A. Yoshida, A. Lo, J. Leef, and J. M. Millis, “Devastating and fatal complications associated with combined vascular and bile duct injuries during cholecystectomy,” Arch. Surg. 137, 703-710(2002).

Biophys. J. (1)

R. C. Haskell, B. J. Tromberg, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. Mcadams, “Boundary conditions for the diffusion equation in radiative transfer,” Biophys. J. 66, A378-A378 (1994).

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

J Biomed. Opt. (1)

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J Biomed. Opt. 5, 237-247(2000).
[CrossRef]

J. Biomed. Opt. (6)

V. E. Pera, E. L. Heffer, H. Siebold, O. Schutz, S. Heywang-Kobrunner, L. Gotz, A. Heinig, and S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517-524 (2003).
[CrossRef]

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt. 12, 051602 (2007).
[CrossRef]

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt. 12, 020509 (2007).
[CrossRef]

I. Nishidate, T. Maeda, Y. Aizu, and K. Niizeki, “Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images,” J. Biomed. Opt. 12, 054006 (2007).
[CrossRef]

R. J. Zemp, R. Bitton, M. L. Li, K. K. Shung, G. Stoica, and L. V. Wang, “Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer,” J. Biomed. Opt. 12, 010501 (2007).
[CrossRef]

B. Li, B. Majaron, J. A. Viator, T. E. Milner, Z. Chen, Y. Zhao, H. Ren, and J. S. Nelson, “Accurate measurement of blood vessel depth in port wine stained human skin in vivo using pulsed photothermal radiometry,” J. Biomed. Opt. 9, 961-966 (2004).
[CrossRef]

J. Gastrointest. Surg. (1)

E. H. Livingston, J. A. Miller, B. Coan, and R. V. Rege, “Costs and Utilization of Intraoperative Cholangiography,” J. Gastrointest. Surg. (2007).

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361-1367(2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Med. Biol. (3)

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44, 2689-2702 (1999).
[CrossRef]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619-3641 (2007).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).

Proc. SPIE (1)

A. V. Bykov, A.V.Priezzhiev, and R.Myllyla, “Spatial resolved diffuse reflection as a tool for determination of size and embedding depth of blood vessels,” Proc. SPIE 6629, 66291P(2007).

Surg. Technol. Int. (1)

D. A. Osborne, G. Alexander, B. Boe, and E. E. Zervos, “Laparoscopic cholecystectomy: past, present, and future,” Surg. Technol. Int. 15, 81-85 (2006).

Other (2)

R. Chamberlain and L. H. S. Blumgart, Hepatobiliary Surgery, (Landes Bioscience, 2003), Chap. 1, pp. 1-10.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: the Art of Scientific Computing, (Cambridge U. Press, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Linear probe geometry and its placement on the adipose tissue surface relative to the underlying biliary tree vessels. (b) View of the linear probe’s bottom side facing the adipose tissue surface; each array element can serve as both a light source and a detector.

Fig. 2
Fig. 2

(a) Pictorial representation of the surface-based localization strategy for underlying heterogeneities. Light was emitted simultaneously from all linear array source elements except from the one that served as the detector–reflectance data was acquired from each detector element sequentially. (b) Spectrally resolved reflectance profile for the tissue geometry depicted in (a). (c) Deduced μ a _ app ( λ ) values for that geometry.

Fig. 3
Fig. 3

(a) Pictorial representation of the depthwise localization strategy for underlying heterogeneities. Light was emitted from all the linear array source elements simultaneously except from the one serving as the detector. (b) Values of μ a _ app 1 ( λ ) obtained as a function of top layer thickness.

Fig. 4
Fig. 4

(a) Spectrally resolved reflectance profile for the tissue geometry depicted in Fig. 1a. The artery, bile duct, and vein were centered at ( x , z ) values of ( 1 , 4 ), (2, 4), and (2, 11), respectively. (b) Deduced μ a _ app ( λ ) values for that geometry.

Fig. 5
Fig. 5

Spatial variation of μ a _ app ( λ ) on the adipose tissue surface for the tissue geometry depicted in Fig. 1a and λ = 866 nm , with the artery and bile duct centered at increasing depths (4, 6 and 8 mm ) with no underlying vein.

Fig. 6
Fig. 6

(a) Plot of depthwise μ a _ app 1 ( λ ) at λ = 866 nm for an isolated artery embedded in adipose tissue, centered at increasing depths (3, 4, 6, and 8 mm ) with no underlying vein. (b) Plot of depthwise μ a _ app 1 ( λ ) at λ = 866 nm for different biliary tree geometries (lone artery, artery with underlying vein, and lone bile duct; artery and bile duct were centered at 4 mm and the vein at 9 mm ); curves were scaled by different amounts to aid visualization.

Fig. 7
Fig. 7

(a) Estimation of blood μ a _ app 1 ( λ ) values at λ = 866 nm as artery and vein were stepped at 3, 4, and 5 mm and 8, 9, and 10 mm depth, respectively, whereas the bile duct was kept fixed at 4 mm (see text for more details). (b) Effect of error in assumed adipose tissue μ s ( λ ) values on the artery depth localization; curves were scaled by different amounts to aid visualization.

Fig. 8
Fig. 8

(a) Spatial variation of μ a _ app ( λ ) at λ = 810 nm on the Intralipid surface for blood-filled capillary tubes placed at depths of 3 and 5 mm and immediately below the detector position at 3 mm . (b) Plot of depthwise μ a _ app 1 ( λ ) for the two capillary depths.

Tables (1)

Tables Icon

Table 1 Assumed Tissue Optical Properties at Each of the Five Wavelengths for which MC Simulations were Performed

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ a _ app ( λ ) = S b lood ( x μ a H b O 2 ( λ ) + ( 1 x ) μ a H b ( λ ) ) + S w ater μ a w ater ( λ ) + S b ile μ a b ile ( λ )

Metrics