Abstract

In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4μm in the x direction and 16μm in the y direction and a relative velocity resolution of 1×103 have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42, 495-511 (2007).
    [CrossRef]
  2. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).
  3. Y.-L. Lo and C.-H. Chuang, “Fluid velocity measurements in a microchannel performed with two new optical heterodyne microscopes,” Appl. Opt. 41, 6666-6675 (2002).
    [CrossRef] [PubMed]
  4. A. K. Tieu, M. R. Mackenzie, and E. B. Li, “Measurements in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293-294 (1995).
    [CrossRef]
  5. G. Fast, D. Kuhn, and A. G. Class, “Tomographische laser-Doppler-anemometrie (TLDA)-ein neues verfahren zur steigerung der ortsauflösung,” Technisches Messen. 73, 527-536 (2006).
    [CrossRef]
  6. M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry (Springer, 1998).
  7. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005).
    [CrossRef]
  8. M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181-1186 (1991).
    [CrossRef]
  9. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
    [CrossRef]
  10. S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001).
    [CrossRef]
  11. C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids 29, S70-S77 (2000).
    [CrossRef]
  12. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006).
    [CrossRef]
  13. M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).
  14. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27, 414-419(1999).
    [CrossRef]
  15. P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
    [CrossRef]
  16. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379-1392 (1997).
    [CrossRef]
  17. R. Lindken, J. Westerweel, and B. Wienke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41, 161-171(2006).
    [CrossRef]
  18. M. Brede, M. Witte, G. Dehnhardt, and A. Leder, “Experimentelle untersuchung biologischer mikroströmungen mittels stereo-μPIV,” in Conference of the German Association for Laser Anemometry (GALA, 2007) (in German language, Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung 2007 Rostock), A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, eds., pp. 53.1-53.8.
  19. K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006).
    [CrossRef]
  20. S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17, 2897-2905 (2006).
    [CrossRef]
  21. C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turblulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327-341 (2006).
    [CrossRef]
  22. J. Czarske, J. Möbius, and K. Moldenhauer, “Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces,” Appl. Opt. 44, 5180-5189 (2005).
    [CrossRef] [PubMed]
  23. J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002).
    [CrossRef]
  24. P. Miles, “Geometry of the fringe field formed in the intersection of two Gaussian beams,” Appl. Opt. 35, 5887-5895 (1996).
    [CrossRef] [PubMed]
  25. L. Büttner, Untersuchung Neuartiger Laser-Doppler-Verfahren zur Hochauflösenden Geschwindigkeitsmessung, E.Cullivier, ed. (Ph.D. thesis in German, 2004).
  26. L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 2274-2280 (2005).
    [CrossRef] [PubMed]
  27. K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
    [CrossRef]
  28. J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
    [CrossRef]
  29. J. W. Czarske, “Method for analysis of the fundamental measuring uncertainty of laser Doppler velocimeters,” Opt. Lett. 21, 522-524 (1996).
    [CrossRef] [PubMed]
  30. T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optics profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
    [CrossRef] [PubMed]
  31. F. M. White, Viscous Fluid Flow (McGraw-Hill, 2005).
  32. H. Müller, V. Strunck, and D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237-245 (1996).
    [CrossRef]
  33. C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008).
    [CrossRef]
  34. L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23, 444-454 (2006).
    [CrossRef]
  35. J. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol. 17, R71-R91 (2006).
    [CrossRef]

2008 (1)

C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008).
[CrossRef]

2007 (1)

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42, 495-511 (2007).
[CrossRef]

2006 (10)

G. Fast, D. Kuhn, and A. G. Class, “Tomographische laser-Doppler-anemometrie (TLDA)-ein neues verfahren zur steigerung der ortsauflösung,” Technisches Messen. 73, 527-536 (2006).
[CrossRef]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006).
[CrossRef]

R. Lindken, J. Westerweel, and B. Wienke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41, 161-171(2006).
[CrossRef]

K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006).
[CrossRef]

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17, 2897-2905 (2006).
[CrossRef]

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turblulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327-341 (2006).
[CrossRef]

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23, 444-454 (2006).
[CrossRef]

J. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol. 17, R71-R91 (2006).
[CrossRef]

2005 (4)

2002 (3)

Y.-L. Lo and C.-H. Chuang, “Fluid velocity measurements in a microchannel performed with two new optical heterodyne microscopes,” Appl. Opt. 41, 6666-6675 (2002).
[CrossRef] [PubMed]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002).
[CrossRef]

2001 (2)

J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001).
[CrossRef]

2000 (1)

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids 29, S70-S77 (2000).
[CrossRef]

1999 (1)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27, 414-419(1999).
[CrossRef]

1997 (1)

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379-1392 (1997).
[CrossRef]

1996 (3)

1995 (1)

A. K. Tieu, M. R. Mackenzie, and E. B. Li, “Measurements in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293-294 (1995).
[CrossRef]

1991 (1)

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181-1186 (1991).
[CrossRef]

Adrian, R. J.

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005).
[CrossRef]

Albrecht, H.-E.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Angele, K. P.

K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006).
[CrossRef]

Arroyo, M. P.

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181-1186 (1991).
[CrossRef]

Bayer, C.

C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008).
[CrossRef]

Becker, S.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

Borys, M.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Brede, M.

M. Brede, M. Witte, G. Dehnhardt, and A. Leder, “Experimentelle untersuchung biologischer mikroströmungen mittels stereo-μPIV,” in Conference of the German Association for Laser Anemometry (GALA, 2007) (in German language, Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung 2007 Rostock), A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, eds., pp. 53.1-53.8.

Buraga-Lefebvre, C.

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001).
[CrossRef]

Büttner, L.

C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008).
[CrossRef]

L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23, 444-454 (2006).
[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 2274-2280 (2005).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optics profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002).
[CrossRef]

L. Büttner, Untersuchung Neuartiger Laser-Doppler-Verfahren zur Hochauflösenden Geschwindigkeitsmessung, E.Cullivier, ed. (Ph.D. thesis in German, 2004).

Choi, G.-M.

M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).

Chuang, C.-H.

Class, A. G.

G. Fast, D. Kuhn, and A. G. Class, “Tomographische laser-Doppler-anemometrie (TLDA)-ein neues verfahren zur steigerung der ortsauflösung,” Technisches Messen. 73, 527-536 (2006).
[CrossRef]

Coëtmellec, S.

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001).
[CrossRef]

Czarske, J.

C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008).
[CrossRef]

L. Büttner and J. Czarske, “Determination of the axial velocity component by a laser-Doppler velocity profile sensor,” J. Opt. Soc. Am. A 23, 444-454 (2006).
[CrossRef]

J. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol. 17, R71-R91 (2006).
[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 2274-2280 (2005).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optics profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

J. Czarske, J. Möbius, and K. Moldenhauer, “Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces,” Appl. Opt. 44, 5180-5189 (2005).
[CrossRef] [PubMed]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002).
[CrossRef]

J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

Czarske, J. W.

Damaschke, N.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Dehnhardt, G.

M. Brede, M. Witte, G. Dehnhardt, and A. Leder, “Experimentelle untersuchung biologischer mikroströmungen mittels stereo-μPIV,” in Conference of the German Association for Laser Anemometry (GALA, 2007) (in German language, Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung 2007 Rostock), A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, eds., pp. 53.1-53.8.

Dopheide, D.

H. Müller, V. Strunck, and D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237-245 (1996).
[CrossRef]

Durst, F.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

Elsinga, G. E.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006).
[CrossRef]

Fast, G.

G. Fast, D. Kuhn, and A. G. Class, “Tomographische laser-Doppler-anemometrie (TLDA)-ein neues verfahren zur steigerung der ortsauflösung,” Technisches Messen. 73, 527-536 (2006).
[CrossRef]

Fukchi, Y.

M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).

Fukuzato, K.

M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).

Greated, C. A.

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181-1186 (1991).
[CrossRef]

Groenendijk, B. C. W.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

Hierck, B. P.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

Hinsch, K. D.

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
[CrossRef]

Kähler, C. J.

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turblulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327-341 (2006).
[CrossRef]

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids 29, S70-S77 (2000).
[CrossRef]

Kasagi, N.

K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006).
[CrossRef]

Kiger, K. T.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

Kim, K. C.

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17, 2897-2905 (2006).
[CrossRef]

Knuppertz, H.

Kompenhans, J.

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids 29, S70-S77 (2000).
[CrossRef]

M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry (Springer, 1998).

Kuhn, D.

G. Fast, D. Kuhn, and A. G. Class, “Tomographische laser-Doppler-anemometrie (TLDA)-ein neues verfahren zur steigerung der ortsauflösung,” Technisches Messen. 73, 527-536 (2006).
[CrossRef]

Lebrun, D.

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001).
[CrossRef]

Leder, A.

M. Brede, M. Witte, G. Dehnhardt, and A. Leder, “Experimentelle untersuchung biologischer mikroströmungen mittels stereo-μPIV,” in Conference of the German Association for Laser Anemometry (GALA, 2007) (in German language, Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung 2007 Rostock), A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, eds., pp. 53.1-53.8.

Li, E. B.

A. K. Tieu, M. R. Mackenzie, and E. B. Li, “Measurements in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293-294 (1995).
[CrossRef]

Lienhart, H.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

Lindken, R.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42, 495-511 (2007).
[CrossRef]

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

R. Lindken, J. Westerweel, and B. Wienke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41, 161-171(2006).
[CrossRef]

Lo, Y.-L.

Mackenzie, M. R.

A. K. Tieu, M. R. Mackenzie, and E. B. Li, “Measurements in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293-294 (1995).
[CrossRef]

Meinhart, C. D.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27, 414-419(1999).
[CrossRef]

Miles, P.

Miwa, J.

K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006).
[CrossRef]

Miyauchi, T.

M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).

Möbius, J.

Moldenhauer, K.

Müller, H.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002).
[CrossRef]

H. Müller, V. Strunck, and D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237-245 (1996).
[CrossRef]

Ortmanns, J.

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turblulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327-341 (2006).
[CrossRef]

Özkul, C.

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001).
[CrossRef]

Pfister, T.

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optics profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

Poelmann, R. E.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

Raffel, M.

M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry (Springer, 1998).

Razik, T.

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002).
[CrossRef]

Santiago, J. G.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27, 414-419(1999).
[CrossRef]

Scarano, F.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006).
[CrossRef]

Scholz, U.

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turblulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327-341 (2006).
[CrossRef]

Shirai, K.

C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008).
[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optics profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

Stekelenburg-de Vos, S.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

Strunck, V.

H. Müller, V. Strunck, and D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237-245 (1996).
[CrossRef]

Suzuki, Y.

K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006).
[CrossRef]

Tanahashi, M.

M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).

ten Hagen, T. L. M.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

Tieu, A. K.

A. K. Tieu, M. R. Mackenzie, and E. B. Li, “Measurements in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293-294 (1995).
[CrossRef]

Tropea, C.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

Ursem, N. T. C.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

Vennemann, P.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42, 495-511 (2007).
[CrossRef]

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

von Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006).
[CrossRef]

Wereley, S. T.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27, 414-419(1999).
[CrossRef]

Westerweel, J.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42, 495-511 (2007).
[CrossRef]

R. Lindken, J. Westerweel, and B. Wienke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41, 161-171(2006).
[CrossRef]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379-1392 (1997).
[CrossRef]

Westeweel, J.

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

White, F. M.

F. M. White, Viscous Fluid Flow (McGraw-Hill, 2005).

Wieneke, B.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006).
[CrossRef]

Wienke, B.

R. Lindken, J. Westerweel, and B. Wienke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41, 161-171(2006).
[CrossRef]

Willert, C.

M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry (Springer, 1998).

Witte, M.

M. Brede, M. Witte, G. Dehnhardt, and A. Leder, “Experimentelle untersuchung biologischer mikroströmungen mittels stereo-μPIV,” in Conference of the German Association for Laser Anemometry (GALA, 2007) (in German language, Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung 2007 Rostock), A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, eds., pp. 53.1-53.8.

Yoon, S. Y.

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17, 2897-2905 (2006).
[CrossRef]

Appl. Opt. (5)

Exp. Fluids (9)

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473-481 (2006).
[CrossRef]

A. K. Tieu, M. R. Mackenzie, and E. B. Li, “Measurements in microscopic flow with a solid-state LDA,” Exp. Fluids 19, 293-294 (1995).
[CrossRef]

R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005).
[CrossRef]

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42, 495-511 (2007).
[CrossRef]

C. J. Kähler and J. Kompenhans, “Fundamentals of multiple plane stereo particle image velocimetry,” Exp. Fluids 29, S70-S77 (2000).
[CrossRef]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. von Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933-947 (2006).
[CrossRef]

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Exp. Fluids 27, 414-419(1999).
[CrossRef]

R. Lindken, J. Westerweel, and B. Wienke, “Stereoscopic micro particle image velocimetry,” Exp. Fluids 41, 161-171(2006).
[CrossRef]

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turblulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327-341 (2006).
[CrossRef]

Flow Meas. Instrum. (1)

H. Müller, V. Strunck, and D. Dopheide, “The application of quadrature demodulation techniques for the investigation of flows,” Flow Meas. Instrum. 7, 237-245 (1996).
[CrossRef]

J. Biomech. (1)

P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hagen, N. T. C. Ursem, R. E. Poelmann, J. Westeweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200(2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (10)

J. Czarske, “Laser Doppler velocimetry using powerful solid-state light sources,” Meas. Sci. Technol. 17, R71-R91 (2006).
[CrossRef]

C. Bayer, K. Shirai, L. Büttner, and J. Czarske, “Measurement of acceleration and multiple velocity components using a laser Doppler velocity profile sensor,” Meas. Sci. Technol. 19, 055401 (2008).
[CrossRef]

J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979-1989 (2002).
[CrossRef]

K. P. Angele, Y. Suzuki, J. Miwa, and N. Kasagi, “Development of a high-speed scanning micro PIV system using a rotating disc,” Meas. Sci. Technol. 17, 1639-1646 (2006).
[CrossRef]

S. Y. Yoon and K. C. Kim, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol. 17, 2897-2905 (2006).
[CrossRef]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379-1392 (1997).
[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181-1186 (1991).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
[CrossRef]

S. Coëtmellec, C. Buraga-Lefebvre, D. Lebrun, and C. Özkul, “Application of in-line digital holography to multiple plane velocimetry,” Meas. Sci. Technol. 12, 1392-1397 (2001).
[CrossRef]

Opt. Lett. (1)

Technisches Messen. (1)

G. Fast, D. Kuhn, and A. G. Class, “Tomographische laser-Doppler-anemometrie (TLDA)-ein neues verfahren zur steigerung der ortsauflösung,” Technisches Messen. 73, 527-536 (2006).
[CrossRef]

Other (6)

M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry (Springer, 1998).

M. Brede, M. Witte, G. Dehnhardt, and A. Leder, “Experimentelle untersuchung biologischer mikroströmungen mittels stereo-μPIV,” in Conference of the German Association for Laser Anemometry (GALA, 2007) (in German language, Lasermethoden in der Strömungsmesstechnik, 15. Fachtagung 2007 Rostock), A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, eds., pp. 53.1-53.8.

M. Tanahashi, Y. Fukchi, G.-M. Choi, K. Fukuzato, and T. Miyauchi, “The time-resolved stereoscopic digital particle image velocimetry up to 26.7 KHz,” in Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, paper 8.1 (Lisbon, Portugal 12-15 July, 2004).

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, 2003).

F. M. White, Viscous Fluid Flow (McGraw-Hill, 2005).

L. Büttner, Untersuchung Neuartiger Laser-Doppler-Verfahren zur Hochauflösenden Geschwindigkeitsmessung, E.Cullivier, ed. (Ph.D. thesis in German, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Converging and diverging fringe system of the laser Doppler profile sensor. The overlapping fringe systems are shown separately here. A particle passing the measurement volume emits two bursts of frequencies f 1 and f 2 , by which the position z and the lateral velocity v can be determined.

Fig. 2
Fig. 2

Setup of a laser Doppler profile sensor based on wavelength division multiplexing (WDM).

Fig. 3
Fig. 3

Fringe spacing function of the red and infrared fringe systems.

Fig. 4
Fig. 4

Setup of a laser Doppler profile sensor based on frequency division multiplexing.

Fig. 5
Fig. 5

Fringe spacing function of the two green fringe systems.

Fig. 6
Fig. 6

Measured velocity profile of the microchannel flow. The gray dots are the raw data. The distance of the shown fit-parabolas in the z direction is used to determine the spatial resolution for this measurement.

Fig. 7
Fig. 7

Setup of the laser Doppler field sensor. Two laser Doppler profile sensors are combined, such that their optical axes are orthogonal and their measurement volumes overlap. The measurement volume of the field sensor corresponds to the intersection region of the measurement volumes of the profile sensors. For detection either separate units or one single detection unit (as shown here) can be used.

Fig. 8
Fig. 8

Photo of the field sensor. In this setup there is a separate detection unit for each profile sensor.

Fig. 9
Fig. 9

Four burst signals and their Fourier transforms belonging to the same tracer particle. The burst signals correspond to the following fringe systems (from up to down): 1. red, 2. infrared, 3. green ( 20 MHz ), 4. green ( 120 MHz ).

Fig. 10
Fig. 10

Optical demultiplexing unit to separate the scattered light of three wavelengths.

Fig. 11
Fig. 11

Diesel injection nozzle of the DSLA series from BOSCH. The diameter of the nozzle is 260 μm .

Fig. 12
Fig. 12

Measurement of the flow of the diesel injection nozzle. The middle of the nozzle is in the lower right corner.

Fig. 13
Fig. 13

Scans through the measured nozzle profile.

Tables (3)

Tables Icon

Table 1 Systematic Errors Determined in the Characterization of the Field Sensor with the Rotating Pinhole Disc

Tables Icon

Table 2 Statistical Errors Determined in the Characterization of the Field Sensor with the Rotating Pinhole Disc

Tables Icon

Table 3 Scheme for Determining the Whole 2d3c-Velocity Field by Using Chirp Evaluation of the Burst Signal

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

q ( z ) = d 1 ( z ) d 2 ( z ) .
f 2 f 1 = v · d 1 ( z ) v · d 2 ( z ) = q ( z ) .
v = d 1 ( z ) · f 1 = d 2 ( z ) · f 2 .
d 0 = λ 2 sin θ ,
d q ( z ) d z | z = 0 = λ cos θ π w o 2 ,
l = 2 2 w 0 sin θ
σ z = 2 | q z | 1 σ f f = 2 | q z | 1 3 π f Δ t SNR · N ,
σ v v = 3 2 σ f f = 3 2 3 π f Δ t SNR · N .
Δ t · f = n fringes .
N max = Δ t · f b w = f b w f · n fringes ,
σ z = 2 | q z | 1 3 π SNR · f b w f n fringes 3 ,
σ v v = 3 2 3 π SNR · f b w f n fringes 3

Metrics