Abstract

In medical applications of low power laser irradiations, safety is one of the most concerning problems since the light focused by the biological object itself may cause damage of living organisms. The light distributions in an erythrocyte with the shape of native biconcave, oblate spheroid, or disk sphere under the irradiation of a plane light of 632.8nm were studied with a numerical calculation method of finite-difference time domain. The focusing effect by either the biconcave erythrocyte, oblate spheroid, or disk sphere erythrocyte was found to be so remarkable that the light intensities at the focused areas close to the erythrocyte membrane were about 10 times higher than that of the incident light when the light irradiated along the erythrocyte plane. This focusing effect became weak and even disappeared when the irradiation direction deviated from the erythrocyte plane for more than an angle of 15°. Because the highest light intensity in the erythrocyte can be about one order of magnitude higher than that of the incident light, this factor should be taken into account for laser safety in medical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).
    [CrossRef]
  2. J. R. Basford, “Low intensity laser therapy: still not an established clinical tool,” Lasers Surg. Med. 16, 331-342 (1995).
    [CrossRef]
  3. T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).
  4. T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
    [CrossRef]
  5. H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).
    [CrossRef]
  6. X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).
  7. Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).
  8. X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).
  9. M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).
  10. X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).
  11. Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).
  12. Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).
  13. F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
    [CrossRef]
  14. T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).
  15. A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).
  16. J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988).
  17. G. J. Streekstra, A. G. Hoekstra, E. -J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266-2272 (1993).
  18. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).
    [CrossRef]
  19. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).
  20. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999).
    [CrossRef]
  21. P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implementing the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738-3746 (2004).
    [CrossRef]
  22. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999).
    [CrossRef]
  23. C. H. Li, W. K. George, P. W. Zhai, and P. Yang, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13, 4554-4559 (2005).
  24. E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).
  25. J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).
  26. E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).
    [CrossRef]
  27. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230-235 (1999).
    [CrossRef]
  28. E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

2006

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

2005

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

C. H. Li, W. K. George, P. W. Zhai, and P. Yang, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13, 4554-4559 (2005).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).
[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

2004

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implementing the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738-3746 (2004).
[CrossRef]

2003

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

2001

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
[CrossRef]

2000

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
[CrossRef]

1999

1998

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

1995

J. R. Basford, “Low intensity laser therapy: still not an established clinical tool,” Lasers Surg. Med. 16, 331-342 (1995).
[CrossRef]

1993

1992

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).
[CrossRef]

1991

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

1988

1985

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).
[CrossRef]

1972

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).
[CrossRef]

Afanasyeva, N. I.

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
[CrossRef]

Andersson-Engels, S.

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

Angenetti, M.

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
[CrossRef]

Basford, J. R.

J. R. Basford, “Low intensity laser therapy: still not an established clinical tool,” Lasers Surg. Med. 16, 331-342 (1995).
[CrossRef]

Biasio, A. D.

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
[CrossRef]

Bonel, H.

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

Bordi, F.

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
[CrossRef]

Busch, M.

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

Cametti, C.

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
[CrossRef]

Cen, Y.

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Chen, J. Y.

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Chen, Z.

Chernyshev, A. V.

Dop Bar, P. R.

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).
[CrossRef]

Drezek, R.

Duhmke, E.

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

Dunn, A.

Eremin, Y.

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

Eremina, E.

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

Evans, E.

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).
[CrossRef]

Fu, Q.

Fung, Y.

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).
[CrossRef]

George, W. K.

Gu, M.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

He, J. P.

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

Heethaar, R. M.

Hellmers, J.

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

Hoekstra, A. G.

Hong, X. P.

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

Hu, X. H.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

Karlsson, A.

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

Karu, T. I.

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
[CrossRef]

Kattawar, G. W.

Kolyakov, S. F.

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
[CrossRef]

Lee, Y. K.

Li, C. H.

Li, M. X.

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

Li, X. Z.

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

Liang, X. P.

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

Liang, Z. J.

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Lin, Z. F.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

Lu, J. Q.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

Lundeberg, T.

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

Malen, M.

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

Maltsev, V. P.

Mester, A.

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).
[CrossRef]

Mester, A. F.

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).
[CrossRef]

Mester, E.

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).
[CrossRef]

Mi, X. Q.

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Mi, Z. Q.

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

Nijhof, E. -J.

Pyatibrat, L. V.

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
[CrossRef]

Reiser, M.

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

Richards-Kortum, R.

Schaffer, M.

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

Schaffer, P. M.

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

Schuh, R.

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

Semyanov, K. A.

Shepherd, A. P.

Shvalov, A. N.

Soini, E.

Soini, J. T.

Sparapani, L.

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
[CrossRef]

Sroka, S.

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

Steinke, J. M.

Streekstra, G. J.

Sun, W.

Swartling, J.

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

Tarasov, P. A.

Van Bueregel, H. H. F. I.

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).
[CrossRef]

Wang, P. N.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

Wang, Y. F.

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

Welser, L.

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
[CrossRef]

Wriedt, T.

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

Xiao, X. C.

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

Xiao, X. L.

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

Xie, Z. H.

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

Xu, L.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

Yang, M.

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

Yang, P.

Yu, J. T.

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

Yurkin, M. A.

Zhai, P. W.

Zhang, C. L.

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

Zhou, L. W.

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Ann. Plast. Surg.

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

Appl. Opt.

Bioelectrochem. Bioenerg.

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).
[CrossRef]

Chin. J. Laser Med. Surg.

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

Chin. J. Phys. Med. Ther.

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

Chin. J. Phys. Ther.

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

IEEE J. Sel. Top. Quantum Electron.

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng.

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

J. Biomed. Opt.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

J. Photochem. Photobiol. B

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

J. Quant. Spectrosc. Radiat. Transfer

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

J.Quant. Spectrosc. Radiat. Transfer

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

Lasers Med. Sci.

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

Lasers Surg. Med.

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).
[CrossRef]

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).
[CrossRef]

J. R. Basford, “Low intensity laser therapy: still not an established clinical tool,” Lasers Surg. Med. 16, 331-342 (1995).
[CrossRef]

Microvasc. Res.

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Different shape models of the erythrocyte: (a) biconcave, (b) disk sphere, and (c) oblate spheroid.

Fig. 2
Fig. 2

Light distributions in a biconcave erythrocyte in (a) the x - z plane and (b) the x - y plane. The arrows on the left side in both (a) and (b) represent the direction of the incident light (along the x axis). The light intensities along the marked lines in (a) are shown in (c), and the light intensities along the marked lines in (b) are shown in (d) correspondingly, where in both (c) and (d) the solid curves represent the light intensities for the cases of the E vector of the incident light along the y axis, and the dashed curves show the light intensities for the E of incident light along the z axis. The arrows in (c) and (d) indicate the positions of the intersections of the marked lines and the erythrocyte surfaces in (a) and (b).

Fig. 3
Fig. 3

Light distributions in a biconcave erythrocyte in (a) the x - z plane and (b) the x - y plane. The arrows on the left side in (a) represent the direction of the incident light ( 15 ° to the x axis). The light intensities along the marked lines in (a) are shown in (c), and the light intensities along the marked lines in (b) are shown in (d) correspondingly. The E vector of the incident light was along the y axis. The arrows in (c) and (d) indicate the positions of the intersections of the marked lines and the erythrocyte surfaces in (a) and (b).

Fig. 4
Fig. 4

Light distributions in a disk sphere erythrocyte in (a) the x - z plane and (b) the x - y plane. The arrows on the left side in both (a) and (b) represent the direction of the incident light (along the x axis). The light intensities along the marked lines in (a) are shown in (c), and the light intensities along the marked lines in (b) are shown in (d) correspondingly, where in both (c) and (d) the solid curves represent the light intensities for the cases of the E vector of the incident light along the y axis, and the dashed curves show the light intensities for the E vector of incident light along the z axis. The arrows in (c) and (d) indicate the positions of the intersections of the marked lines and the erythrocyte surfaces in (a) and (b).

Fig. 5
Fig. 5

Light distributions in an oblate spheroid erythrocyte in (a) the x - z plane and (b) the x - y plane. The arrows on the left side in both (a) and (b) represent the direction of the incident light (along the x axis). The light intensities along the marked lines in (a) are shown in (c), and the light intensities along the marked lines in (b) are shown in (d) correspondingly, where in both (c) and (d) the solid curves represent the light intensities for the cases of the E vector of the incident light along the y axis, and the dashed curves show the light intensities for the E of incident light along the z axis. The arrows in (c) and (d) indicate the positions of the intersections of the marked lines and the erythrocyte surfaces in (a) and (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

× H = ε E t , × E = μ H t ,
H z y H y z = ε E x t .
E x ( x , y , z , t ) = E x ( i Δ x , j Δ y , k Δ z , n Δ t ) = E x n ( i , j , k ) , H z ( x , y , z , t ) = H z ( i Δ x , j Δ y , k Δ z , n Δ t ) = H z n ( i , j , k ) .
E x n + 1 ( i + 1 2 , j , k ) = E x n ( i + 1 2 , j , k ) + ( Δ t ε r ( i , j , k + 1 2 ) ε 0 δ ) [ H z n + 1 2 ( i + 1 2 , j + 1 2 , k ) H z n + 1 2 ( i + 1 2 , j 1 2 , k ) + H y n + 1 2 ( i + 1 2 , j , k 1 2 ) H y n + 1 2 ( i + 1 2 , j , k + 1 2 ) ] ,

Metrics