Abstract

The low-temperature cavitational disruption by trains of laser pulses was demonstrated in water. The trains used in the experiment were generated by a Raman laser at a wavelength of 1626nm. The mean value of the fragmentation threshold energy density per pulse in a train was estimated to be equal to 7.2×106J/m3. The corresponding amplitude of the negative pressure had the order of 67bars at a temperature jump of only about 2°C. This result opens up prospects for developing precision nonthermal cavitational laser surgery.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996).
    [CrossRef] [PubMed]
  2. F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
    [CrossRef]
  3. G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).
  4. L. K. Zarembo and V. A. Krasil'nikov, Introduction to Nonlinear Acoustics (in Russian), (Nauka, 1966).
  5. G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995).
    [CrossRef]
  6. G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995).
    [CrossRef]
  7. G. I. Zheltov, E. I. Vitkin, and A. S. Rubanov, “Acoustic response of multilayer biostructures to laser irradiation and the possibility of using it in surgery and diagnostics,” J. Appl. Spectrosc. 69, 626-630 (2002).
    [CrossRef]
  8. G. Zheltov, A. Rubanov, and E. Vitkin, “Thermoacoustic processes in pigmented biostructures irradiated by laser pulses,” Vestnik of the Foundation for Basic Research (in Russian) 3, 96-113 (2003).
  9. G. S. Bushman and F. S. Barnes, “Laser-generated thermoelastic shock wave in liquids,” J. Appl. Phys. 46, 2074-2082(1975).
    [CrossRef]
  10. A. Oraevsky and A. Karabutov, “Ultimate sensitivity of time-resolved opto-acoustic detection,” Proc. SPIE 3916, 1-12(2000).
  11. G. M. Hale and M. R. Querry, “Optical constants of water in the band from 0.2 μm to 200 μm,” Appl. Opt. 12, 552-563 (1973).
  12. M. J. Van Germet, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: distribution of time constant and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381-1399 (1966).
  13. D. H. Sliney and M. L. Wolbbarsht, Safety with Laser and Other Optical Sources: A Comprehensive Handbook (Plenum Publishing, 1980).
  14. R. Birngruber, F. Hillencamp, and V. P. Gabel, “Theoretical investigation of laser thermal retinal injury,” Health Phys. 48 (6), 781-796 (1985).
    [CrossRef] [PubMed]
  15. C. P. Cain and A. J. Welch, “Measured and predicted laser-induced temperature rises in the rabbit fundus,” Invest. Ophthal. 13, 60-70 (1974).
    [PubMed]

2003 (1)

G. Zheltov, A. Rubanov, and E. Vitkin, “Thermoacoustic processes in pigmented biostructures irradiated by laser pulses,” Vestnik of the Foundation for Basic Research (in Russian) 3, 96-113 (2003).

2002 (1)

G. I. Zheltov, E. I. Vitkin, and A. S. Rubanov, “Acoustic response of multilayer biostructures to laser irradiation and the possibility of using it in surgery and diagnostics,” J. Appl. Spectrosc. 69, 626-630 (2002).
[CrossRef]

2000 (1)

A. Oraevsky and A. Karabutov, “Ultimate sensitivity of time-resolved opto-acoustic detection,” Proc. SPIE 3916, 1-12(2000).

1996 (2)

A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996).
[CrossRef] [PubMed]

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

1995 (2)

G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995).
[CrossRef]

1991 (1)

G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).

1985 (1)

R. Birngruber, F. Hillencamp, and V. P. Gabel, “Theoretical investigation of laser thermal retinal injury,” Health Phys. 48 (6), 781-796 (1985).
[CrossRef] [PubMed]

1975 (1)

G. S. Bushman and F. S. Barnes, “Laser-generated thermoelastic shock wave in liquids,” J. Appl. Phys. 46, 2074-2082(1975).
[CrossRef]

1974 (1)

C. P. Cain and A. J. Welch, “Measured and predicted laser-induced temperature rises in the rabbit fundus,” Invest. Ophthal. 13, 60-70 (1974).
[PubMed]

1973 (1)

G. M. Hale and M. R. Querry, “Optical constants of water in the band from 0.2 μm to 200 μm,” Appl. Opt. 12, 552-563 (1973).

1966 (1)

M. J. Van Germet, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: distribution of time constant and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381-1399 (1966).

Barnes, F. S.

G. S. Bushman and F. S. Barnes, “Laser-generated thermoelastic shock wave in liquids,” J. Appl. Phys. 46, 2074-2082(1975).
[CrossRef]

Birngruber, R.

R. Birngruber, F. Hillencamp, and V. P. Gabel, “Theoretical investigation of laser thermal retinal injury,” Health Phys. 48 (6), 781-796 (1985).
[CrossRef] [PubMed]

Bushman, G. S.

G. S. Bushman and F. S. Barnes, “Laser-generated thermoelastic shock wave in liquids,” J. Appl. Phys. 46, 2074-2082(1975).
[CrossRef]

Cain, C. P.

C. P. Cain and A. J. Welch, “Measured and predicted laser-induced temperature rises in the rabbit fundus,” Invest. Ophthal. 13, 60-70 (1974).
[PubMed]

Esenaliev, R.

A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996).
[CrossRef] [PubMed]

Frenz, M.

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

Gabel, V. P.

R. Birngruber, F. Hillencamp, and V. P. Gabel, “Theoretical investigation of laser thermal retinal injury,” Health Phys. 48 (6), 781-796 (1985).
[CrossRef] [PubMed]

Glazkov, V.

G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).

Hale, G. M.

G. M. Hale and M. R. Querry, “Optical constants of water in the band from 0.2 μm to 200 μm,” Appl. Opt. 12, 552-563 (1973).

Hillencamp, F.

R. Birngruber, F. Hillencamp, and V. P. Gabel, “Theoretical investigation of laser thermal retinal injury,” Health Phys. 48 (6), 781-796 (1985).
[CrossRef] [PubMed]

Jacques, S.

A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996).
[CrossRef] [PubMed]

Karabutov, A.

A. Oraevsky and A. Karabutov, “Ultimate sensitivity of time-resolved opto-acoustic detection,” Proc. SPIE 3916, 1-12(2000).

Kirkovsky, A.

G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).

Kirkovsky, A. I.

G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995).
[CrossRef]

Koenz, F.

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

Konov, V.

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

Krasil'nikov, V. A.

L. K. Zarembo and V. A. Krasil'nikov, Introduction to Nonlinear Acoustics (in Russian), (Nauka, 1966).

Lucassen, G. W.

M. J. Van Germet, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: distribution of time constant and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381-1399 (1966).

Oraevsky, A.

A. Oraevsky and A. Karabutov, “Ultimate sensitivity of time-resolved opto-acoustic detection,” Proc. SPIE 3916, 1-12(2000).

A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996).
[CrossRef] [PubMed]

Podoltsev, A.

G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).

Podoltsev, A. S.

G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995).
[CrossRef]

Prastisto, H.

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

Querry, M. R.

G. M. Hale and M. R. Querry, “Optical constants of water in the band from 0.2 μm to 200 μm,” Appl. Opt. 12, 552-563 (1973).

Rubanov, A.

G. Zheltov, A. Rubanov, and E. Vitkin, “Thermoacoustic processes in pigmented biostructures irradiated by laser pulses,” Vestnik of the Foundation for Basic Research (in Russian) 3, 96-113 (2003).

Rubanov, A. S.

G. I. Zheltov, E. I. Vitkin, and A. S. Rubanov, “Acoustic response of multilayer biostructures to laser irradiation and the possibility of using it in surgery and diagnostics,” J. Appl. Spectrosc. 69, 626-630 (2002).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995).
[CrossRef]

Silenok, A.

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

Sliney, D. H.

D. H. Sliney and M. L. Wolbbarsht, Safety with Laser and Other Optical Sources: A Comprehensive Handbook (Plenum Publishing, 1980).

Tittel, F.

A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996).
[CrossRef] [PubMed]

Van Germet, M. J.

M. J. Van Germet, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: distribution of time constant and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381-1399 (1966).

Vitkin, E.

G. Zheltov, A. Rubanov, and E. Vitkin, “Thermoacoustic processes in pigmented biostructures irradiated by laser pulses,” Vestnik of the Foundation for Basic Research (in Russian) 3, 96-113 (2003).

Vitkin, E. I.

G. I. Zheltov, E. I. Vitkin, and A. S. Rubanov, “Acoustic response of multilayer biostructures to laser irradiation and the possibility of using it in surgery and diagnostics,” J. Appl. Spectrosc. 69, 626-630 (2002).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995).
[CrossRef]

Weber, H.

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

Welch, A. J.

C. P. Cain and A. J. Welch, “Measured and predicted laser-induced temperature rises in the rabbit fundus,” Invest. Ophthal. 13, 60-70 (1974).
[PubMed]

M. J. Van Germet, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: distribution of time constant and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381-1399 (1966).

Wolbbarsht, M. L.

D. H. Sliney and M. L. Wolbbarsht, Safety with Laser and Other Optical Sources: A Comprehensive Handbook (Plenum Publishing, 1980).

Zarembo, L. K.

L. K. Zarembo and V. A. Krasil'nikov, Introduction to Nonlinear Acoustics (in Russian), (Nauka, 1966).

Zheltov, G.

G. Zheltov, A. Rubanov, and E. Vitkin, “Thermoacoustic processes in pigmented biostructures irradiated by laser pulses,” Vestnik of the Foundation for Basic Research (in Russian) 3, 96-113 (2003).

G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).

Zheltov, G. I.

G. I. Zheltov, E. I. Vitkin, and A. S. Rubanov, “Acoustic response of multilayer biostructures to laser irradiation and the possibility of using it in surgery and diagnostics,” J. Appl. Spectrosc. 69, 626-630 (2002).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995).
[CrossRef]

Appl. Opt. (1)

G. M. Hale and M. R. Querry, “Optical constants of water in the band from 0.2 μm to 200 μm,” Appl. Opt. 12, 552-563 (1973).

Health Phys. (1)

R. Birngruber, F. Hillencamp, and V. P. Gabel, “Theoretical investigation of laser thermal retinal injury,” Health Phys. 48 (6), 781-796 (1985).
[CrossRef] [PubMed]

Invest. Ophthal. (1)

C. P. Cain and A. J. Welch, “Measured and predicted laser-induced temperature rises in the rabbit fundus,” Invest. Ophthal. 13, 60-70 (1974).
[PubMed]

J. Appl. Phys. (1)

G. S. Bushman and F. S. Barnes, “Laser-generated thermoelastic shock wave in liquids,” J. Appl. Phys. 46, 2074-2082(1975).
[CrossRef]

J. Appl. Spectrosc. (1)

G. I. Zheltov, E. I. Vitkin, and A. S. Rubanov, “Acoustic response of multilayer biostructures to laser irradiation and the possibility of using it in surgery and diagnostics,” J. Appl. Spectrosc. 69, 626-630 (2002).
[CrossRef]

Lasers Life Sci. (1)

G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).

Lasers Surg. Med. (1)

A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

M. J. Van Germet, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: distribution of time constant and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381-1399 (1966).

Proc. SPIE (4)

A. Oraevsky and A. Karabutov, “Ultimate sensitivity of time-resolved opto-acoustic detection,” Proc. SPIE 3916, 1-12(2000).

F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995).
[CrossRef]

G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995).
[CrossRef]

Vestnik of the Foundation for Basic Research (1)

G. Zheltov, A. Rubanov, and E. Vitkin, “Thermoacoustic processes in pigmented biostructures irradiated by laser pulses,” Vestnik of the Foundation for Basic Research (in Russian) 3, 96-113 (2003).

Other (2)

L. K. Zarembo and V. A. Krasil'nikov, Introduction to Nonlinear Acoustics (in Russian), (Nauka, 1966).

D. H. Sliney and M. L. Wolbbarsht, Safety with Laser and Other Optical Sources: A Comprehensive Handbook (Plenum Publishing, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Physical response at the free surface of a water-containing medium to the action of a short laser pulse: (a) pressure P, (b) axial velocity U, (c) temperature rise T.

Fig. 2
Fig. 2

Absorbed energy density G, J / m 3 , which forms a bipolar acoustic wave with the amplitude equal to 1   bar in water. The numbers at the curves correspond to the following pulse durations, in seconds: 1  5.0 × 10 9 , 2  1.0 × 10 8 , 3  2.0 × 10 8 , 4  5.0 × 10 8 , 5  1.0 × 10 7 , 6  2.0 × 10 7 , 7  5.0 × 10 7 , 8  1.0 × 10 6 .

Fig. 3
Fig. 3

Diagram of the experimental setup: 1 laser system with a Raman converter, 2 operating radiation with a wavelength of 1626 nm , 3 irradiated medium in the cell, 4 beam splitter, 5 CCD camera, 6 probe radiation with a wavelength of 634 nm ; (a) cavity mirrors, (b) passive LiF Q switch, (c) active laser element; (d) nonlinear Ba ( NO 3 ) 2 crystal.

Fig. 4
Fig. 4

(a) Train of third Stokes pulses of the Raman laser and (b) the typical shape of an individual pulse in the train.

Fig. 5
Fig. 5

Picture of scattering probe light registered by the CCD camera for a laser-pulse energy of (a)  65 mJ and (b)  120 mJ .

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

τ P d / 2 c ,
d T d t = Q + 1 ρ c p d P d t + η 2 T ,
Q = E 0 ( k + s ) ρ c p exp { ( k + s ) z ( r / R ) 2 } ,
d u d t = 1 ρ P z + μ 2 u ,
d v d t = 1 ρ P r + μ ( 2 v v r 2 ) ,
d ρ d t = ρ ( u z + 1 r r r v ) = ρ div ( v ) ,
d d t = t + u z + v r ,
2 = 2 z 2 + 1 r r r r ,
div ( v ) = u z + 1 r r r v ,
ρ P = 1 V 2 V P = α ρ ,
ρ T = 1 V 2 V T = β ρ ,
α = 1 V V P ,
β = 1 V V T .
α d P d t β d T d t = div ( v ) .
Δ t t τ P = d / 2 c 1 / 2 k c .
τ T Δ t t N .

Metrics