M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng. 45, 723-729 (2007).

S. Sinclair and G. G. S. Pegram, “Empirical mode decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting,” Hydrol. Earth Syst. Sciences 9, 127-137 (2005).

J. C. Nunes, S. Guyot, and E. Deléchelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vision Appl. 16, 177-188 (2005).

A. Linderhed, “Variable sampling of the empirical mode decomposition of two-dimensional signals,” Int. J. Wavelets Multires. Inf. Process. 3, 435-452 (2005).

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Sig. Proc. Lett. 12, 701-704 (2005).

A. Federico and G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes using multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44, 2728-2735 (2005).

[CrossRef]

G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42, 2010-2014 (2003).

C. A. Sciammarella and T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182-3193 (2003).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019-1026 (2003).

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598-2604 (2001).

P. D. Ruiz, G. H. Kaufmann, O. Möller, and G. E. Galizzi, “Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements,” Opt. Lasers Eng. 32, 473-484 (2000).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395-2401 (1998).

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding ,” Opt. Eng. 35, 9-14 (1996).

F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 567-585 (1989).

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng. 45, 723-729 (2007).

F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 567-585 (1989).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019-1026 (2003).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019-1026 (2003).

K. Creath, “Temporal phase method,” in *Interferogram Analysis*, D. Robinson and G. Reid, eds. (Institute of Physics, 1993), pp. 94-140.

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Sig. Proc. Lett. 12, 701-704 (2005).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019-1026 (2003).

J. C. Nunes, S. Guyot, and E. Deléchelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vision Appl. 16, 177-188 (2005).

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng. 45, 723-729 (2007).

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes,” Appl. Opt. 45, 1909-1916 (2006).

[CrossRef]

A. Federico and G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes using multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44, 2728-2735 (2005).

[CrossRef]

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598-2604 (2001).

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in *Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing*, NSIP-03, Grado, Italy (IEEE, 2003), http://perso.ens-lyon.fr/patrick.flandrin/publis.html#Communications.

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng. 45, 723-729 (2007).

P. D. Ruiz, G. H. Kaufmann, O. Möller, and G. E. Galizzi, “Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements,” Opt. Lasers Eng. 32, 473-484 (2000).

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding ,” Opt. Eng. 35, 9-14 (1996).

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in *Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing*, NSIP-03, Grado, Italy (IEEE, 2003), http://perso.ens-lyon.fr/patrick.flandrin/publis.html#Communications.

J. C. Nunes, S. Guyot, and E. Deléchelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vision Appl. 16, 177-188 (2005).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

Y. Tian, Y. Huang, and Y. Li, “Image zooming method using 2D EMD technique,” in *Proceedings of IEEE 6th World Congress on Intelligent Control and Automation* (IEEE, 2006), pp. 10036-10040.

J. M. Huntley, “Automated analysis of speckle interferograms,” in *Digital Speckle Pattern Interferometry and Related Techniques*, P. K. Rastogi, ed. (Wiley, 2001), pp. 59-139.

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng. 45, 723-729 (2007).

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes,” Appl. Opt. 45, 1909-1916 (2006).

[CrossRef]

A. Federico and G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes using multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44, 2728-2735 (2005).

[CrossRef]

G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42, 2010-2014 (2003).

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598-2604 (2001).

P. D. Ruiz, G. H. Kaufmann, O. Möller, and G. E. Galizzi, “Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements,” Opt. Lasers Eng. 32, 473-484 (2000).

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395-2401 (1998).

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding ,” Opt. Eng. 35, 9-14 (1996).

C. A. Sciammarella and T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182-3193 (2003).

M. Shen, H. Tang, and B. Li, “The modified bidimensional empirical mode decomposition for image denoising,” in *Proceedings of IEEE 8th International Conference on Signal Processing* (IEEE, 2006), pp. 16-20.

Y. Tian, Y. Huang, and Y. Li, “Image zooming method using 2D EMD technique,” in *Proceedings of IEEE 6th World Congress on Intelligent Control and Automation* (IEEE, 2006), pp. 10036-10040.

A. Linderhed, “Variable sampling of the empirical mode decomposition of two-dimensional signals,” Int. J. Wavelets Multires. Inf. Process. 3, 435-452 (2005).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Sig. Proc. Lett. 12, 701-704 (2005).

P. D. Ruiz, G. H. Kaufmann, O. Möller, and G. E. Galizzi, “Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements,” Opt. Lasers Eng. 32, 473-484 (2000).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019-1026 (2003).

J. C. Nunes, S. Guyot, and E. Deléchelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vision Appl. 16, 177-188 (2005).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019-1026 (2003).

S. Sinclair and G. G. S. Pegram, “Empirical mode decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting,” Hydrol. Earth Syst. Sciences 9, 127-137 (2005).

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Sig. Proc. Lett. 12, 701-704 (2005).

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in *Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing*, NSIP-03, Grado, Italy (IEEE, 2003), http://perso.ens-lyon.fr/patrick.flandrin/publis.html#Communications.

P. D. Ruiz, G. H. Kaufmann, O. Möller, and G. E. Galizzi, “Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements,” Opt. Lasers Eng. 32, 473-484 (2000).

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395-2401 (1998).

C. A. Sciammarella and T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182-3193 (2003).

M. Shen, H. Tang, and B. Li, “The modified bidimensional empirical mode decomposition for image denoising,” in *Proceedings of IEEE 8th International Conference on Signal Processing* (IEEE, 2006), pp. 16-20.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

S. Sinclair and G. G. S. Pegram, “Empirical mode decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting,” Hydrol. Earth Syst. Sciences 9, 127-137 (2005).

M. Shen, H. Tang, and B. Li, “The modified bidimensional empirical mode decomposition for image denoising,” in *Proceedings of IEEE 8th International Conference on Signal Processing* (IEEE, 2006), pp. 16-20.

Y. Tian, Y. Huang, and Y. Li, “Image zooming method using 2D EMD technique,” in *Proceedings of IEEE 6th World Congress on Intelligent Control and Automation* (IEEE, 2006), pp. 10036-10040.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

T. Y. Yang, *Finite Element Structural Analysis* (Prentice-Hall, 1986), pp. 446-449.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

S. Sinclair and G. G. S. Pegram, “Empirical mode decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting,” Hydrol. Earth Syst. Sciences 9, 127-137 (2005).

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Sig. Proc. Lett. 12, 701-704 (2005).

F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of deformations,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 567-585 (1989).

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vision Comput. 21, 1019-1026 (2003).

A. Linderhed, “Variable sampling of the empirical mode decomposition of two-dimensional signals,” Int. J. Wavelets Multires. Inf. Process. 3, 435-452 (2005).

J. C. Nunes, S. Guyot, and E. Deléchelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vision Appl. 16, 177-188 (2005).

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395-2401 (1998).

G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42, 2010-2014 (2003).

C. A. Sciammarella and T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182-3193 (2003).

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598-2604 (2001).

P. D. Ruiz, G. H. Kaufmann, O. Möller, and G. E. Galizzi, “Evaluation of impact-induced transient deformations using double-pulsed electronic speckle pattern interferometry and finite elements,” Opt. Lasers Eng. 32, 473-484 (2000).

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng. 45, 723-729 (2007).

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. London Ser. A. 454, 903-995 (1998).

G. H. Kaufmann and G. E. Galizzi, “Speckle noise reduction in television holography fringes using wavelet thresholding ,” Opt. Eng. 35, 9-14 (1996).

J. M. Huntley, “Automated analysis of speckle interferograms,” in *Digital Speckle Pattern Interferometry and Related Techniques*, P. K. Rastogi, ed. (Wiley, 2001), pp. 59-139.

K. Creath, “Temporal phase method,” in *Interferogram Analysis*, D. Robinson and G. Reid, eds. (Institute of Physics, 1993), pp. 94-140.

Y. Tian, Y. Huang, and Y. Li, “Image zooming method using 2D EMD technique,” in *Proceedings of IEEE 6th World Congress on Intelligent Control and Automation* (IEEE, 2006), pp. 10036-10040.

T. Y. Yang, *Finite Element Structural Analysis* (Prentice-Hall, 1986), pp. 446-449.

M. Shen, H. Tang, and B. Li, “The modified bidimensional empirical mode decomposition for image denoising,” in *Proceedings of IEEE 8th International Conference on Signal Processing* (IEEE, 2006), pp. 16-20.

G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in *Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing*, NSIP-03, Grado, Italy (IEEE, 2003), http://perso.ens-lyon.fr/patrick.flandrin/publis.html#Communications.