Abstract

We demonstrate the observation of gold-nanoparticle internalization in membranes of living cells by using noninterferometric widefield optical profilometry (NIWOP). The NIWOP technique can trace the height of an 80nm gold particle on the membrane by calibrating the change of light intensity scattered from the particle along the optical axis. On the membrane, the depth resolution based on the scattering signal is similar to that based on the reflection signal, nearly 20nm. Comparing the heights of the nanoparticle and the nearby cell membranes, we can identify the occurrence of particle internalization. Combining fluorescence microscopy with NIWOP, we also find actin aggregation around the site of the internalization process, which is an indication of endocytosis.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004).
    [CrossRef] [PubMed]
  2. T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309-2314 (2004).
    [CrossRef]
  3. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
    [CrossRef]
  4. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
    [CrossRef] [PubMed]
  5. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14, 405-414 (2006).
    [CrossRef] [PubMed]
  6. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-834 (2005).
    [CrossRef] [PubMed]
  7. K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
    [CrossRef] [PubMed]
  8. J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006).
    [CrossRef] [PubMed]
  9. C. J. Merrifield, “Seeing is believing: imaging actin dynamics at single sites of endocytosis,” Trends Cell Biol. 14, 352-358(2004).
    [CrossRef] [PubMed]
  10. D. Yarar, C. M. Waterman-Storer, and S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell 16, 964-975(2005).
    [CrossRef]
  11. T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
    [CrossRef] [PubMed]
  12. H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
    [CrossRef]
  13. H. T. McMahon and J. L. Gallop, “Membrane curvature and mechanisms of dynamic cell membrane remodelling,” Nature (London) 438, 590-596 (2005).
    [CrossRef]
  14. C.-H. Lee, H.-Y. Mong, and W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773-1775 (2002).
    [CrossRef]
  15. C.-C. Wang, J.-Y. Lin, and C.-H. Lee, “Membrane ripples of a living cell measured by non-interferometric widefield optical profilometry,” Opt. Express 13, 10665-10672 (2005).
    [CrossRef] [PubMed]
  16. C.-C. Wang, J.-Y. Lin, H.-C. Chen, and C.-H. Lee, “Dynamics of cell membranes and the underlying cytoskeletons observed by non-interferometric widefield optical profilometry and fluorescence microscopy,” Opt. Lett. 31, 2873-2875 (2006).
    [CrossRef] [PubMed]
  17. Y. Colpin, A. Swan, A. V. Zvyagin, and T. Plakhotnik, “Imaging and sizing of diamond nanoparticles,” Opt. Lett. 31, 625-627(2006).
    [CrossRef] [PubMed]
  18. E. Smythe and K. R. Ayscough, “Actin regulation in endocytosis,” J. Cell Sci. 119, 4589-4598 (2006).
    [CrossRef] [PubMed]
  19. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
    [CrossRef]
  20. C.-H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2 nm depth resolution,” Opt. Commun. 135, 233-237 (1997).
    [CrossRef]
  21. H. Tomoda, Y. Kishimoto, and Y. C. Lee, “Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages,” J. Biol. Chem. 264, 15445-15450 (1989).
    [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  23. L. J. Kleinsmith and V. M. Kish, Principles of Cell and Molecular Biology (Harpercollins College, 1995), Chap. 7.

2006 (6)

J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006).
[CrossRef] [PubMed]

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

E. Smythe and K. R. Ayscough, “Actin regulation in endocytosis,” J. Cell Sci. 119, 4589-4598 (2006).
[CrossRef] [PubMed]

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14, 405-414 (2006).
[CrossRef] [PubMed]

Y. Colpin, A. Swan, A. V. Zvyagin, and T. Plakhotnik, “Imaging and sizing of diamond nanoparticles,” Opt. Lett. 31, 625-627(2006).
[CrossRef] [PubMed]

C.-C. Wang, J.-Y. Lin, H.-C. Chen, and C.-H. Lee, “Dynamics of cell membranes and the underlying cytoskeletons observed by non-interferometric widefield optical profilometry and fluorescence microscopy,” Opt. Lett. 31, 2873-2875 (2006).
[CrossRef] [PubMed]

2005 (4)

C.-C. Wang, J.-Y. Lin, and C.-H. Lee, “Membrane ripples of a living cell measured by non-interferometric widefield optical profilometry,” Opt. Express 13, 10665-10672 (2005).
[CrossRef] [PubMed]

D. Yarar, C. M. Waterman-Storer, and S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell 16, 964-975(2005).
[CrossRef]

H. T. McMahon and J. L. Gallop, “Membrane curvature and mechanisms of dynamic cell membrane remodelling,” Nature (London) 438, 590-596 (2005).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

2004 (5)

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

C. J. Merrifield, “Seeing is believing: imaging actin dynamics at single sites of endocytosis,” Trends Cell Biol. 14, 352-358(2004).
[CrossRef] [PubMed]

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

2002 (2)

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

C.-H. Lee, H.-Y. Mong, and W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773-1775 (2002).
[CrossRef]

2000 (1)

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

1997 (2)

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

C.-H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2 nm depth resolution,” Opt. Commun. 135, 233-237 (1997).
[CrossRef]

1995 (1)

L. J. Kleinsmith and V. M. Kish, Principles of Cell and Molecular Biology (Harpercollins College, 1995), Chap. 7.

1989 (1)

H. Tomoda, Y. Kishimoto, and Y. C. Lee, “Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages,” J. Biol. Chem. 264, 15445-15450 (1989).
[PubMed]

1983 (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Astruc, D.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004).
[CrossRef] [PubMed]

Aussenegg, F. R.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Ayscough, K. R.

E. Smythe and K. R. Ayscough, “Actin regulation in endocytosis,” J. Cell Sci. 119, 4589-4598 (2006).
[CrossRef] [PubMed]

Berry, C. C.

J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brunner, C.

Chan, V. Z.-H.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Chen, H.-C.

Colpin, Y.

Curtis, A. S. G.

J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006).
[CrossRef] [PubMed]

Daniel, M.-C.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004).
[CrossRef] [PubMed]

de la Fuente, J. M.

J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Fantus, C.

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

Feldmann, J.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Fujiwara, T.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Gallop, J. L.

H. T. McMahon and J. L. Gallop, “Membrane curvature and mechanisms of dynamic cell membrane remodelling,” Nature (London) 438, 590-596 (2005).
[CrossRef]

Geier, S.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Hakanson, U.

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

Hatakeyama, H.

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

Hecker, N. E.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Iino, R.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Jacobsen, V.

Jeromin, A.

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

Juskaitis, R.

Kalkbrenner, T.

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Kasai, H.

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

Kish, V. M.

L. J. Kleinsmith and V. M. Kish, Principles of Cell and Molecular Biology (Harpercollins College, 1995), Chap. 7.

Kishimoto, T.

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

Kishimoto, Y.

H. Tomoda, Y. Kishimoto, and Y. C. Lee, “Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages,” J. Biol. Chem. 264, 15445-15450 (1989).
[PubMed]

Kleinsmith, L. J.

L. J. Kleinsmith and V. M. Kish, Principles of Cell and Molecular Biology (Harpercollins College, 1995), Chap. 7.

Krenn, J. R.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Kusumi, A.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Lamprecht, B.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Lee, C.-H.

Lee, Y. C.

H. Tomoda, Y. Kishimoto, and Y. C. Lee, “Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages,” J. Biol. Chem. 264, 15445-15450 (1989).
[PubMed]

Lin, J.-Y.

Lin, W.-C.

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Liu, T.-T.

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

McMahon, H. T.

H. T. McMahon and J. L. Gallop, “Membrane curvature and mechanisms of dynamic cell membrane remodelling,” Nature (London) 438, 590-596 (2005).
[CrossRef]

Merrifield, C. J.

C. J. Merrifield, “Seeing is believing: imaging actin dynamics at single sites of endocytosis,” Trends Cell Biol. 14, 352-358(2004).
[CrossRef] [PubMed]

Moller, M.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Mong, H.-Y.

Murakoshi, H.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Murase, K.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Neil, M. A. A.

Nemoto, T.

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

Plakhotnik, T.

Riehle, M. O.

J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006).
[CrossRef] [PubMed]

Ritchie, K.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Roder, J.

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

Saito, M.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Sandoghdar, V.

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14, 405-414 (2006).
[CrossRef] [PubMed]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

Scalettar, B. A.

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

Schmid, S. L.

D. Yarar, C. M. Waterman-Storer, and S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell 16, 964-975(2005).
[CrossRef]

Smythe, E.

E. Smythe and K. R. Ayscough, “Actin regulation in endocytosis,” J. Cell Sci. 119, 4589-4598 (2006).
[CrossRef] [PubMed]

Sonnichsen, C.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Spatz, J. P.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Stoller, P.

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, “Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface,” Opt. Express 14, 405-414 (2006).
[CrossRef] [PubMed]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Suzuki, K.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Swan, A.

Takahashi, N.

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

Terakawa, S.

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

Tomoda, H.

H. Tomoda, Y. Kishimoto, and Y. C. Lee, “Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages,” J. Biol. Chem. 264, 15445-15450 (1989).
[PubMed]

Tsuboi, T.

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

Umemura, Y.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Vogel, V.

von Plessen, G.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Wang, C.-C.

Wang, J.

C.-H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2 nm depth resolution,” Opt. Commun. 135, 233-237 (1997).
[CrossRef]

Waterman-Storer, C. M.

D. Yarar, C. M. Waterman-Storer, and S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell 16, 964-975(2005).
[CrossRef]

Wilson, T.

Yamashita, H.

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Yarar, D.

D. Yarar, C. M. Waterman-Storer, and S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell 16, 964-975(2005).
[CrossRef]

Zvyagin, A. V.

Adv. Drug Delivery Rev. (1)

H. Kasai, T. Kishimoto, T. Nemoto, H. Hatakeyama, T.-T. Liu, and N. Takahashi, “Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization,” Adv. Drug Delivery Rev. 58, 850-877 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949-2951 (2000).
[CrossRef]

Biophys. J. (1)

K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi, “Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques,” Biophys. J. 86, 4075-4093 (2004).
[CrossRef] [PubMed]

Chem. Rev. (1)

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004).
[CrossRef] [PubMed]

J. Biol. Chem. (2)

T. Tsuboi, S. Terakawa, B. A. Scalettar, C. Fantus, J. Roder, and A. Jeromin, “Sweeping model of dynamin activity,” J. Biol. Chem. 277, 15957-15961 (2002).
[CrossRef] [PubMed]

H. Tomoda, Y. Kishimoto, and Y. C. Lee, “Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages,” J. Biol. Chem. 264, 15445-15450 (1989).
[PubMed]

J. Cell Sci. (1)

E. Smythe and K. R. Ayscough, “Actin regulation in endocytosis,” J. Cell Sci. 119, 4589-4598 (2006).
[CrossRef] [PubMed]

Langmuir (1)

J. M. de la Fuente, C. C. Berry, M. O. Riehle, and A. S. G. Curtis, “Nanoparticle targeting at cells,” Langmuir 22, 3286-3293 (2006).
[CrossRef] [PubMed]

Mol. Biol. Cell (1)

D. Yarar, C. M. Waterman-Storer, and S. L. Schmid, “A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis,” Mol. Biol. Cell 16, 964-975(2005).
[CrossRef]

Nano Lett. (2)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5, 829-834 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Hakanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309-2314 (2004).
[CrossRef]

Nature (London) (1)

H. T. McMahon and J. L. Gallop, “Membrane curvature and mechanisms of dynamic cell membrane remodelling,” Nature (London) 438, 590-596 (2005).
[CrossRef]

Opt. Commun. (1)

C.-H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2 nm depth resolution,” Opt. Commun. 135, 233-237 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Trends Cell Biol. (1)

C. J. Merrifield, “Seeing is believing: imaging actin dynamics at single sites of endocytosis,” Trends Cell Biol. 14, 352-358(2004).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

L. J. Kleinsmith and V. M. Kish, Principles of Cell and Molecular Biology (Harpercollins College, 1995), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Linear regions of the axial response curves of our NIWOP system. Triangle, measured data when scanning the bottom of a culture dish along the optical axis; square, measured data when scanning a BSA-gold-nanoparticle along the optical axis; solid line, linear fitting to the squares. The standard deviation between the measured squares and the fitted points is 20 nm .

Fig. 2
Fig. 2

(a) Bright-field image of a fibroblast. (b) Membrane topography of the same cell in (a) obtained by NIWOP. (c) Time-lapse images of the region enclosed by the dashed squares in (a) and (b) captured during the internalization process. The timing format is in min sec . In each panel, the upper part is the bright-field image and the lower part is the membrane topography. The viewing angle is slightly tilted for better visualization. A white arrow indicates the nanoparticle bound on the membrane. Some particles float around but do not stay on the membrane.

Fig. 3
Fig. 3

Height variations of the nanoparticle (solid line) and the nearby cell membranes (dashed line) during the observation in Fig. 2c. The nanoparticle stays under the membrane after the twelfth minute.

Fig. 4
Fig. 4

(a) Membrane topography of a fibroblast obtained by NIWOP. (b) GFP–actin distribution of the same cell in (a). (c) Time-lapse images of the region enclosed by the dashed squares in (a) and (b) captured during the internalization process. The timing format is in min sec . In each panel the upper one is the membrane topography and the lower one is the fluorescence image of GFP–actin. The viewing angle is slightly tilted for better visualization. A white arrow indicates the nanoparticle bound on the membrane.

Fig. 5
Fig. 5

Height variations of the nanoparticle (solid line) and the nearby cell membranes (dashed line) during the observation in Fig. 4c. The nanoparticle enters the membrane at the 4th minute but reemerges at the 21st minute.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I SN = P 0 σ s α Z NP ,
σ s = π θ π + θ 2 π ( 1 + cos 2 θ 2 ) ( 2 π λ ) 4 ( n r 2 1 n r 2 + 2 ) 2 ( d 2 ) 6 sin θ d θ ,
I BF = P 0 σ s .
Δ Z NP = Δ I SN I BF α .

Metrics