Abstract

We demonstrate the development of a simply equipped displacement sensor utilizing spatially dispersive confocal technology. It feeds the amplified spontaneous emission (ASE) of a laser diode to a wavelength-selective feedback structure that corresponds to the position of a measured surface. The displacement sensor has a detecting range of 4μm and precision of less than 2  nm, as proven by the analysis of the spectral shifts of the multipassed amplified output ASE. As compared with traditional sensors, the displacement sensor presented in our study requires fewer components and has as high precision as complex systems and a higher measurement rate due to the simpler strategy of displacement determination.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
    [CrossRef]
  2. P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
    [CrossRef]
  3. M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, "Design of a large depth of view three-dimensional camera for robot vision," Opt. Eng. 26, 1245-1250 (1987).
  4. A. Dieckmann and M. C. Amann, "Phase-noise limited accuracy of distance measurements in a frequency modulated continuous wave LIDAR with a tunable twin-guide laser diode," Opt. Eng. 34, 896-903 (1995).
    [CrossRef]
  5. R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
    [CrossRef]
  6. K. Määttä, J. Kostamovaara, and R. Myllylä, "Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques," Appl. Opt. 32, 5334-5347 (1993).
    [CrossRef] [PubMed]
  7. C. H. Liu, W. Y. Jywe, and C. K. Chen, "Development of a diffraction-type optical triangulation sensor," Appl. Opt. 43, 5607-5613 (2004).
    [CrossRef] [PubMed]
  8. R. Baribeau and M. Rioux, "Influence of speckle on laser range finders," Appl. Opt. 30, 2873-2878 (1991).
    [CrossRef] [PubMed]
  9. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
    [CrossRef]
  10. K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, "Self-mixing in a diode laser as a method for cardiovascular diagnostics," J. Biomed. Opt. 8, 152-160 (2003).
    [CrossRef] [PubMed]
  11. J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, "Arterial pulsewave shape measurement using self-mixing effect in a diode laser," Quantum Electron. 32, 975-980 (2002).
    [CrossRef]
  12. A. Courteville, T. Gharbi, and J. Y. Cornu, "Noncontact MMG sensor based on the optical feedback effect in a laser diode," J. Biomed. Opt. 3, 281-285 (1998).
    [CrossRef]
  13. C. H. Lee, H. Y. Mong, and W. C. Lin, "Noninterferometric wide-field optical profilometry with nanometer depth resolution," Opt. Lett. 27, 1773-1775 (2002).
    [CrossRef]

2004 (1)

2003 (1)

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, "Self-mixing in a diode laser as a method for cardiovascular diagnostics," J. Biomed. Opt. 8, 152-160 (2003).
[CrossRef] [PubMed]

2002 (3)

J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, "Arterial pulsewave shape measurement using self-mixing effect in a diode laser," Quantum Electron. 32, 975-980 (2002).
[CrossRef]

C. H. Lee, H. Y. Mong, and W. C. Lin, "Noninterferometric wide-field optical profilometry with nanometer depth resolution," Opt. Lett. 27, 1773-1775 (2002).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

2001 (2)

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
[CrossRef]

P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
[CrossRef]

1998 (2)

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
[CrossRef]

A. Courteville, T. Gharbi, and J. Y. Cornu, "Noncontact MMG sensor based on the optical feedback effect in a laser diode," J. Biomed. Opt. 3, 281-285 (1998).
[CrossRef]

1995 (1)

A. Dieckmann and M. C. Amann, "Phase-noise limited accuracy of distance measurements in a frequency modulated continuous wave LIDAR with a tunable twin-guide laser diode," Opt. Eng. 34, 896-903 (1995).
[CrossRef]

1993 (1)

1991 (1)

1987 (1)

M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, "Design of a large depth of view three-dimensional camera for robot vision," Opt. Eng. 26, 1245-1250 (1987).

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
[CrossRef]

A. Dieckmann and M. C. Amann, "Phase-noise limited accuracy of distance measurements in a frequency modulated continuous wave LIDAR with a tunable twin-guide laser diode," Opt. Eng. 34, 896-903 (1995).
[CrossRef]

Baribeau, R.

Bechthold, G.

M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, "Design of a large depth of view three-dimensional camera for robot vision," Opt. Eng. 26, 1245-1250 (1987).

Bosch, T.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Chen, C. K.

Cornu, J. Y.

A. Courteville, T. Gharbi, and J. Y. Cornu, "Noncontact MMG sensor based on the optical feedback effect in a laser diode," J. Biomed. Opt. 3, 281-285 (1998).
[CrossRef]

Courteville, A.

A. Courteville, T. Gharbi, and J. Y. Cornu, "Noncontact MMG sensor based on the optical feedback effect in a laser diode," J. Biomed. Opt. 3, 281-285 (1998).
[CrossRef]

de Groot, P.

P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
[CrossRef]

Dieckmann, A.

A. Dieckmann and M. C. Amann, "Phase-noise limited accuracy of distance measurements in a frequency modulated continuous wave LIDAR with a tunable twin-guide laser diode," Opt. Eng. 34, 896-903 (1995).
[CrossRef]

Donati, S.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Duggan, M.

M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, "Design of a large depth of view three-dimensional camera for robot vision," Opt. Eng. 26, 1245-1250 (1987).

Gharbi, T.

A. Courteville, T. Gharbi, and J. Y. Cornu, "Noncontact MMG sensor based on the optical feedback effect in a laser diode," J. Biomed. Opt. 3, 281-285 (1998).
[CrossRef]

Giuliani, G.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Hast, J.

J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, "Arterial pulsewave shape measurement using self-mixing effect in a diode laser," Quantum Electron. 32, 975-980 (2002).
[CrossRef]

Hinrikus, H.

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, "Self-mixing in a diode laser as a method for cardiovascular diagnostics," J. Biomed. Opt. 8, 152-160 (2003).
[CrossRef] [PubMed]

Jywe, W. Y.

Kattai, R.

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, "Self-mixing in a diode laser as a method for cardiovascular diagnostics," J. Biomed. Opt. 8, 152-160 (2003).
[CrossRef] [PubMed]

Kostamovaara, J.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
[CrossRef]

K. Määttä, J. Kostamovaara, and R. Myllylä, "Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques," Appl. Opt. 32, 5334-5347 (1993).
[CrossRef] [PubMed]

Lass, J.

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, "Self-mixing in a diode laser as a method for cardiovascular diagnostics," J. Biomed. Opt. 8, 152-160 (2003).
[CrossRef] [PubMed]

Lee, C. H.

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Lin, W. C.

Liu, C. H.

Määttä, K.

Mäntyniemi, A.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
[CrossRef]

Marszalec, J.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
[CrossRef]

Meigas, K.

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, "Self-mixing in a diode laser as a method for cardiovascular diagnostics," J. Biomed. Opt. 8, 152-160 (2003).
[CrossRef] [PubMed]

Miettinen, J.

J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, "Arterial pulsewave shape measurement using self-mixing effect in a diode laser," Quantum Electron. 32, 975-980 (2002).
[CrossRef]

Mong, H. Y.

Myllylä, R.

J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, "Arterial pulsewave shape measurement using self-mixing effect in a diode laser," Quantum Electron. 32, 975-980 (2002).
[CrossRef]

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
[CrossRef]

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
[CrossRef]

K. Määttä, J. Kostamovaara, and R. Myllylä, "Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques," Appl. Opt. 32, 5334-5347 (1993).
[CrossRef] [PubMed]

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
[CrossRef]

R. Baribeau and M. Rioux, "Influence of speckle on laser range finders," Appl. Opt. 30, 2873-2878 (1991).
[CrossRef] [PubMed]

M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, "Design of a large depth of view three-dimensional camera for robot vision," Opt. Eng. 26, 1245-1250 (1987).

Sorvoja, H.

J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, "Arterial pulsewave shape measurement using self-mixing effect in a diode laser," Quantum Electron. 32, 975-980 (2002).
[CrossRef]

Taylor, D.

M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, "Design of a large depth of view three-dimensional camera for robot vision," Opt. Eng. 26, 1245-1250 (1987).

Ulbrich, G.-J.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
[CrossRef]

Appl. Opt. (3)

J. Biomed. Opt. (2)

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, "Self-mixing in a diode laser as a method for cardiovascular diagnostics," J. Biomed. Opt. 8, 152-160 (2003).
[CrossRef] [PubMed]

A. Courteville, T. Gharbi, and J. Y. Cornu, "Noncontact MMG sensor based on the optical feedback effect in a laser diode," J. Biomed. Opt. 3, 281-285 (1998).
[CrossRef]

J. Opt. (1)

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," J. Opt. 29, 188-193 (1998).
[CrossRef]

J. Opt. A (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Opt. Eng. (4)

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, "Laser ranging a critical review of usual technologies for distance measurement," Opt. Eng. 40, 10-19 (2001).
[CrossRef]

P. de Groot, "Unusual techniques for absolute distance measurement," Opt. Eng. 40, 28-32 (2001).
[CrossRef]

M. Rioux, G. Bechthold, D. Taylor, and M. Duggan, "Design of a large depth of view three-dimensional camera for robot vision," Opt. Eng. 26, 1245-1250 (1987).

A. Dieckmann and M. C. Amann, "Phase-noise limited accuracy of distance measurements in a frequency modulated continuous wave LIDAR with a tunable twin-guide laser diode," Opt. Eng. 34, 896-903 (1995).
[CrossRef]

Opt. Lett. (1)

Quantum Electron. (1)

J. Hast, R. Myllylä, H. Sorvoja, and J. Miettinen, "Arterial pulsewave shape measurement using self-mixing effect in a diode laser," Quantum Electron. 32, 975-980 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of displacement sensor D featuring a laser diode with an antireflection coating on the angle facet and a 10% transmission (90% reflection) coating on the left-hand side: M, the mirrorlike surface under measurement; L 1 , L 2 , and L 3 , aspheric lenses; C, a collimator that collimates the output light into the spectrometer by fiber.

Fig. 2
Fig. 2

Normalized feedback light intensity of the optical structure at the angle facet side of diode D taken at a wavelength of 1550   nm in a specially optimized position.

Fig. 3
Fig. 3

Gain bandwidth of the gain medium D.

Fig. 4
Fig. 4

Weight-center shifts of simplified model ASE (dashed curve) and measured data (solid curve). Since the feedback ratio of the ray-tracing simulation may have deviation, the number of round trips is not precise.

Fig. 5
Fig. 5

Series of spectra (solid curves) caused by different relative displacements of mirror M and corresponding spectra (dashed curves) obtained from simulation results.

Fig. 6
Fig. 6

Weight centers of the spectra with the error bar of one standard deviation's length as a function of the nanorange displacement.

Fig. 7
Fig. 7

Compact design structure of the experimental displacement sensor.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ( λ , L ) G ( λ ) r ( λ , L ) + 1 R ( λ , L ) r ( λ , L ) ,
y = 0.0641 x + 1580.1335 ,
F ( λ ) = α λ + β ,
D 1 ( λ ) = γ ( α λ + β ) S ( λ , L ) d λ = γ [ α λ S ( λ , L ) d λ + β S ( λ , L ) d λ ] .
D 2 ( L ) = δ S ( λ , L ) d λ .
D 1 ( L ) / D 2 ( L ) = ( γ / δ ) [ α λ S ( λ , L ) d λ / S ( λ , L ) d λ + β ] = ( γ α / δ ) λ w . c . + γ β / δ .

Metrics