Abstract

A visible wide field multispectral system for comprehensive imaging of skin chromophores and blood vessels has been implemented, and an inhomogeneous Monte Carlo model of photon migration with randomly distributed blood vessels embedded in dermis has been developed. Predetermined nonlinear transforms have been obtained to address the nonlinear interdependent relationship among diffusive reflectance spectra, skin physiology properties, and geometry. For validation, in addition to real skin experiments and phantoms experiments, two alternative methods for blood vessel imaging have been used on the same set of subjects to compensate for the lack of ground truth for skin subsurface imaging.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissue in vivo," Appl. Opt. 38, 2105-2115 (1999).
    [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  3. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  4. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, "Multispectral tissue characterization with time-resolved detection of diffusely scattered white light," Opt. Lett. 18, 1697-1699 (1993).
    [CrossRef] [PubMed]
  5. M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, "Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue," Appl. Opt. 30, 4474-4476 (1991).
    [CrossRef] [PubMed]
  6. S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, "Portable, high-bandwidth frequency domain photon migration instrument for tissue spectroscopy," Opt. Lett. 19, 1934-1936 (1994).
    [CrossRef] [PubMed]
  7. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
    [CrossRef] [PubMed]
  8. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).
    [CrossRef] [PubMed]
  9. S. A. Prahl and I. A. Vitkin, "Determination of optical properties of turbid media using pulsed photothermal radiometry," Phys. Med. Bio. 37, 1203-1207 (1992).
    [CrossRef]
  10. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Bio. 44, 967-981 (1999).
    [CrossRef]
  11. I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
    [CrossRef] [PubMed]
  12. M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, and J. S. Nelson, "Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy," Phys. Med. Bio. 42, 41-50 (1997).
    [CrossRef]
  13. S. L. Jacques, I. S. Saidi, and F. K. Tittel, "Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy," Proc. SPIE 2128, 231-237 (1994).
    [CrossRef]
  14. W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, "Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media," Phys. Med. Bio. 42, 51-65 (1997).
    [CrossRef]
  15. I. Nishidate, Y. Aizu, and H. Mishina, "Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images," Opt. Lett. 30, 2128-2130 (2005).
    [CrossRef] [PubMed]
  16. K. Zuzak, M. Schaeberle, E. Lewis, and I. Levin, "Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion," Anal. Chem. 74, 2021-2028 (2002).
    [CrossRef] [PubMed]
  17. R. R. Anderson, J. Hu, and J. A. Parrish, "Optical radiation transfer in the human skin and applications in in vivo remittance spectroscopy," in Bioengineering and Skin (MTP Press, 1980), pp. 253-265.
  18. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  19. M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tsunazawa, "Analysis of nonlinear relation for skin hemoglobin imaging," Opt. Express 9, 802-812 (2001).
    [CrossRef] [PubMed]
  20. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sternborg, "Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers," Opt. Lett. 27, 246-248 (2002).
    [CrossRef]
  21. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, "Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy," Med. Phys. 22, 1209-1217 (1995).
    [CrossRef] [PubMed]
  22. M. Firbank, E. Okada, and D. T. Delpy, "Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy," Phys. Med. Bio. 44, 967-981 (1999).
  23. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy," Appl. Opt. 44, 2072-2081 (2005).
    [CrossRef] [PubMed]
  24. P. R. Gill, W. Murray, and M. H. Wright, "The Levenberg-Marquardt Method," in Practical Optimization (Academic, 1981), pp. 136-137.
  25. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
    [CrossRef] [PubMed]
  26. S. L. Jacques, "Skin optics," Oregon Medical Laser Center News (Jan., 1998).

2005 (2)

2004 (1)

I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
[CrossRef] [PubMed]

2002 (2)

K. Zuzak, M. Schaeberle, E. Lewis, and I. Levin, "Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion," Anal. Chem. 74, 2021-2028 (2002).
[CrossRef] [PubMed]

R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sternborg, "Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers," Opt. Lett. 27, 246-248 (2002).
[CrossRef]

2001 (1)

1999 (3)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Bio. 44, 967-981 (1999).
[CrossRef]

M. Firbank, E. Okada, and D. T. Delpy, "Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy," Phys. Med. Bio. 44, 967-981 (1999).

M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissue in vivo," Appl. Opt. 38, 2105-2115 (1999).
[CrossRef]

1997 (2)

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, "Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media," Phys. Med. Bio. 42, 51-65 (1997).
[CrossRef]

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, and J. S. Nelson, "Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy," Phys. Med. Bio. 42, 41-50 (1997).
[CrossRef]

1996 (1)

1995 (2)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, "Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy," Med. Phys. 22, 1209-1217 (1995).
[CrossRef] [PubMed]

1994 (2)

S. L. Jacques, I. S. Saidi, and F. K. Tittel, "Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy," Proc. SPIE 2128, 231-237 (1994).
[CrossRef]

S. J. Madsen, E. R. Anderson, R. C. Haskell, and B. J. Tromberg, "Portable, high-bandwidth frequency domain photon migration instrument for tissue spectroscopy," Opt. Lett. 19, 1934-1936 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (2)

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

S. A. Prahl and I. A. Vitkin, "Determination of optical properties of turbid media using pulsed photothermal radiometry," Phys. Med. Bio. 37, 1203-1207 (1992).
[CrossRef]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

M. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, "Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue," Appl. Opt. 30, 4474-4476 (1991).
[CrossRef] [PubMed]

1989 (2)

Anal. Chem. (1)

K. Zuzak, M. Schaeberle, E. Lewis, and I. Levin, "Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion," Anal. Chem. 74, 2021-2028 (2002).
[CrossRef] [PubMed]

Appl. Opt. (5)

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
[CrossRef] [PubMed]

Med. Phys. (2)

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, "Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy," Med. Phys. 22, 1209-1217 (1995).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Med. Bio. (5)

M. Firbank, E. Okada, and D. T. Delpy, "Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy," Phys. Med. Bio. 44, 967-981 (1999).

S. A. Prahl and I. A. Vitkin, "Determination of optical properties of turbid media using pulsed photothermal radiometry," Phys. Med. Bio. 37, 1203-1207 (1992).
[CrossRef]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Bio. 44, 967-981 (1999).
[CrossRef]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, and M. J. C. van Gemert, "Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media," Phys. Med. Bio. 42, 51-65 (1997).
[CrossRef]

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, and J. S. Nelson, "Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy," Phys. Med. Bio. 42, 41-50 (1997).
[CrossRef]

Proc. SPIE (1)

S. L. Jacques, I. S. Saidi, and F. K. Tittel, "Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy," Proc. SPIE 2128, 231-237 (1994).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (3)

R. R. Anderson, J. Hu, and J. A. Parrish, "Optical radiation transfer in the human skin and applications in in vivo remittance spectroscopy," in Bioengineering and Skin (MTP Press, 1980), pp. 253-265.

P. R. Gill, W. Murray, and M. H. Wright, "The Levenberg-Marquardt Method," in Practical Optimization (Academic, 1981), pp. 136-137.

S. L. Jacques, "Skin optics," Oregon Medical Laser Center News (Jan., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Process flow chart; (b) geometry of inhomogeneous two-layered skin model.

Fig. 2
Fig. 2

Look-up diagram obtained from Monte Carlo calculation for depth visualization by a dual-wavelength (420 and 588   nm ) method.

Fig. 3
Fig. 3

Multispectral imaging system scheme, LS, tungsten light source; LP, linear polarizer; TLCF, tunable liquid crystal.

Fig. 4
Fig. 4

Fiber-based multispectral imaging system scheme.

Fig. 5
Fig. 5

(a) Phantom layout and geometry and (b) optical properties of components.

Fig. 6
Fig. 6

Typical Monte Carlo calculated absorption spectrum.

Fig. 7
Fig. 7

(a) Reconstruction results for the phantom experiment, the known parameters of the phantom: coffee volume fraction 70%; blood volume fraction 0.5 % ; microtubing ID 325 μ m ; microtubing depth from the surface 900 μ m . (b) Reconstructed skin parameter maps for in vivo experiment.

Fig. 8
Fig. 8

Comparison with results of comprehensive (method I) and alternative imaging (method II) methods: (a) diameter, (b) depth.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = log 10 ( R ( λ ) ) = C i ε i ( λ ) l ¯ i ( λ , C i ) + S ( λ ) ,
A ( λ ) = F diam F depth [ ( 1 s ) ε Hb ( λ ) + s ε HbO 2 ( λ ) ] × C Hb+HbO 2 l ¯ dermis ( λ , C Hb , C HbO 2 ) + C melanin ε melanin ( λ ) l ¯ epidermis ( λ , C melanin ) + S ( λ ) ,
F diam ( D , λ ) = 1 exp D ( ( 1 s ) ε Hb ( λ ) + s ε HbO 2 ( λ ) ) D ( C Hb ε Hb ( λ ) + C HbO 2 ε HbO 2 ( λ ) )
A ( λ ) = 1 exp a 4 ( ( 1 a 2 ) ε Hb ( λ ) + a 2 ε HbO 2 ( λ ) ) a 4 ( ( 1 a 2 ) ε Hb ( λ ) + a 2 ε HbO 2 ( λ ) ) × exp ( μ dermis ( λ ) a 5 ) [ ( 1 a 2 ) ε Hb ( λ ) + a 2 2 ε HbO 2 ( λ ) ] a 1 + a 3 ε melanin ( λ ) + a 0 + residue ( λ ) ,
C 5 × N = M 5 × 16 × A 16 × N ,
R d ( λ ) = a ( λ ) 2 ( 1 + e ( 4 / 3 ) A 3 ( 1 a ( λ ) ) ) 1 1 + 3 ( 1 a ( λ ) ) ,
R ( x , y , λ ) = I ( x , y , λ ) I dark I white ( x , y , λ ) I dark .

Metrics