Abstract

Gelatin sensitized with tot'hema and eosin (compounds used in medical therapy) appears to be an excellent material for microlens fabrication. Lenses are produced by irradiation with a 532  nm laser beam. Aspheric concave lenses are formed rapidly with low power radiation. The lens profile is analyzed, as well as imaging properties. Physics of lens formation is also proposed. All material constituents are nonpoisonous, resulting in an environmentally safe, low toxicity material.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
    [CrossRef]
  2. T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, "Light tamers," Photon. Spectra 38, 58-65 (2004).
  3. J. R. Flores and J. Sochacki, "Design of gradient-index microlenses for stacked planar optics," Appl. Opt. 33, 3409-3414 (1994).
    [CrossRef] [PubMed]
  4. S. Calixto and G. Paez Padilla, "Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation," Appl. Opt. 35, 6126-6130 (1996).
    [CrossRef] [PubMed]
  5. D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, "Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si," Opt. Express 11, 2244-2252 (2003).
    [CrossRef] [PubMed]
  6. R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with nonspherical elements," Pure Appl. Opt. 6, 663-671 (1997).
    [CrossRef]
  7. N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron Eng. 60, 365-379 (2002).
    [CrossRef]
  8. M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Appl. Opt. 37, 627-631 (1998).
    [CrossRef]
  9. M-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
    [CrossRef]
  10. Y. Fu and N. K. Bryan, "Semiconductor microlenses fabricated by one-step focused ion beam direct writing," IEEE Trans. Semicond. Manuf. 15, 229-231 (2002).
    [CrossRef]
  11. M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
    [CrossRef]
  12. S. Calixto and M. S. Scholl, "Relief optical microelements fabricated with dichromated gelatin," Appl. Opt. 36, 2101-2106 (1997).
    [CrossRef] [PubMed]
  13. S. Mihailov and S. Lazare, "Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon," Appl. Opt. 32, 6211-6218 (1993).
    [CrossRef] [PubMed]
  14. C. D. Jones, M. J. Serpe, L. Schroeder, and L. A. Lyon, "Microlens formation in microgel/gold colloid composite materials via photothermal patterning," J. Am. Chem. Soc. 125, 5292-5293 (2003).
    [CrossRef] [PubMed]
  15. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
    [CrossRef]
  16. http://www.vidal.fr/Medicament/totlowbarhema-16626.htm.
  17. D. Pantelic and B. Muric, "Improving the holographic sensitivity of dichromated gelatin in the blue green part of the spectrum by sensitization with xanthene dyes," Appl. Opt. 40, 2871-2875 (2001).
    [CrossRef]
  18. V. Dhayalan, T. Standnes, J. J. Stamnes, and H. Heier, "Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses," Pure Appl. Opt. 6, 603-615 (1997).
    [CrossRef]
  19. N. Lindlein, "Simulation of micro-optical systems including microlens arrays," J. Opt. A: Pure Appl. Opt. 4, S1-S9 (2002).
    [CrossRef]
  20. M. Guizar-Sicairos and J. C. Gutierrez-Vega, "Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields," J. Opt. Soc. Am. A 21, 53-58 (2004).
    [CrossRef]
  21. G. Da Costa and J. Calatroni, "Transient deformation of liquid surfaces by laser-induced thermocapillarity," Appl. Opt. 18, 233-235 (1979).
    [CrossRef]
  22. R. A. Duarte-Quiroga and S. Calixto, "Dynamical optical microelements on dye-sensitized gels," Appl. Opt. 39, 3948-3954 (2000).
    [CrossRef]
  23. G. Da Costa and J. Calatroni, "Self-holograms of laser-induced surface depressions in heavy hydrocarbons (ET)," Appl. Opt. 17, 2381-2385 (1978).
    [CrossRef]
  24. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, "Microoptical telescope compound eye," Opt. Express 13, 889-903 (2005).
    [CrossRef] [PubMed]
  25. S. Savić Šević and D. Pantelić, "Relief hologram replication using a dental composite as an embossing tool," Opt. Express 13, 2747-2754 (2005).
    [CrossRef] [PubMed]

2005 (2)

2004 (3)

M. Guizar-Sicairos and J. C. Gutierrez-Vega, "Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields," J. Opt. Soc. Am. A 21, 53-58 (2004).
[CrossRef]

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, "Light tamers," Photon. Spectra 38, 58-65 (2004).

M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
[CrossRef]

2003 (2)

C. D. Jones, M. J. Serpe, L. Schroeder, and L. A. Lyon, "Microlens formation in microgel/gold colloid composite materials via photothermal patterning," J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef] [PubMed]

D. W. de Lima Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, "Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si," Opt. Express 11, 2244-2252 (2003).
[CrossRef] [PubMed]

2002 (4)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron Eng. 60, 365-379 (2002).
[CrossRef]

M-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Y. Fu and N. K. Bryan, "Semiconductor microlenses fabricated by one-step focused ion beam direct writing," IEEE Trans. Semicond. Manuf. 15, 229-231 (2002).
[CrossRef]

N. Lindlein, "Simulation of micro-optical systems including microlens arrays," J. Opt. A: Pure Appl. Opt. 4, S1-S9 (2002).
[CrossRef]

2001 (1)

2000 (1)

1998 (1)

1997 (5)

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with nonspherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

V. Dhayalan, T. Standnes, J. J. Stamnes, and H. Heier, "Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses," Pure Appl. Opt. 6, 603-615 (1997).
[CrossRef]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
[CrossRef]

S. Calixto and M. S. Scholl, "Relief optical microelements fabricated with dichromated gelatin," Appl. Opt. 36, 2101-2106 (1997).
[CrossRef] [PubMed]

1996 (1)

1994 (1)

1993 (1)

1979 (1)

1978 (1)

Akhzar-Mehr, O.

Bräuer, A.

Bryan, N. K.

Y. Fu and N. K. Bryan, "Semiconductor microlenses fabricated by one-step focused ion beam direct writing," IEEE Trans. Semicond. Manuf. 15, 229-231 (2002).
[CrossRef]

Bu, J.

M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
[CrossRef]

Calatroni, J.

Calixto, S.

Chakmakjian, S.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, "Light tamers," Photon. Spectra 38, 58-65 (2004).

Da Costa, G.

de Lima Monteiro, D. W.

Dhayalan, V.

V. Dhayalan, T. Standnes, J. J. Stamnes, and H. Heier, "Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses," Pure Appl. Opt. 6, 603-615 (1997).
[CrossRef]

Duarte-Quiroga, R. A.

Duparré, J.

Ehlert, R.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with nonspherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Eisner, M.

J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, "Microoptical telescope compound eye," Opt. Express 13, 889-903 (2005).
[CrossRef] [PubMed]

Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Flores, J. R.

Fu, Y.

Y. Fu and N. K. Bryan, "Semiconductor microlenses fabricated by one-step focused ion beam direct writing," IEEE Trans. Semicond. Manuf. 15, 229-231 (2002).
[CrossRef]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron Eng. 60, 365-379 (2002).
[CrossRef]

Grunwald, R.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with nonspherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Guizar-Sicairos, M.

Gutierrez-Vega, J. C.

Haselbeck, S.

Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

He, M.

M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
[CrossRef]

Heier, H.

V. Dhayalan, T. Standnes, J. J. Stamnes, and H. Heier, "Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses," Pure Appl. Opt. 6, 603-615 (1997).
[CrossRef]

Herzig, H. P.

Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Ito, H.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
[CrossRef]

Jones, C. D.

C. D. Jones, M. J. Serpe, L. Schroeder, and L. A. Lyon, "Microlens formation in microgel/gold colloid composite materials via photothermal patterning," J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef] [PubMed]

Kanai, G.

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron Eng. 60, 365-379 (2002).
[CrossRef]

Komachi, Y.

Lazare, S.

Lindlein, N.

N. Lindlein, "Simulation of micro-optical systems including microlens arrays," J. Opt. A: Pure Appl. Opt. 4, S1-S9 (2002).
[CrossRef]

Lyon, L. A.

C. D. Jones, M. J. Serpe, L. Schroeder, and L. A. Lyon, "Microlens formation in microgel/gold colloid composite materials via photothermal patterning," J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef] [PubMed]

Masuda, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
[CrossRef]

Matthes, A.

Mihailov, S.

Morris, G. M.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, "Light tamers," Photon. Spectra 38, 58-65 (2004).

Muric, B.

Ngo, N. Q.

M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
[CrossRef]

Nose, T.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
[CrossRef]

Nussbaum, Ph.

Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron Eng. 60, 365-379 (2002).
[CrossRef]

Paez Padilla, G.

Pantelic, D.

Park, C.

M-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Pshenay-Severin, E.

Reinecke, W.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with nonspherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Sales, T. R. M.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, "Light tamers," Photon. Spectra 38, 58-65 (2004).

Sarro, P. M.

Sato, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
[CrossRef]

Savic Ševic, S.

Scharf, T.

Schertler, D. J.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, "Light tamers," Photon. Spectra 38, 58-65 (2004).

Scholl, M. S.

Schreiber, P.

Schroeder, L.

C. D. Jones, M. J. Serpe, L. Schroeder, and L. A. Lyon, "Microlens formation in microgel/gold colloid composite materials via photothermal patterning," J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef] [PubMed]

Serpe, M. J.

C. D. Jones, M. J. Serpe, L. Schroeder, and L. A. Lyon, "Microlens formation in microgel/gold colloid composite materials via photothermal patterning," J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef] [PubMed]

Sochacki, J.

Stamnes, J. J.

V. Dhayalan, T. Standnes, J. J. Stamnes, and H. Heier, "Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses," Pure Appl. Opt. 6, 603-615 (1997).
[CrossRef]

Standnes, T.

V. Dhayalan, T. Standnes, J. J. Stamnes, and H. Heier, "Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses," Pure Appl. Opt. 6, 603-615 (1997).
[CrossRef]

Takahashi, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
[CrossRef]

Tao, S. H.

M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
[CrossRef]

Tünnermann, A.

Vdovin, G.

Völkel, R.

Völkely, R.

Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

Wakaki, M.

Whitesides, G. M.

M-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Woggon, S.

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with nonspherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

Wu, M-H.

M-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Yuan, X-C

M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
[CrossRef]

Appl. Opt. (10)

J. R. Flores and J. Sochacki, "Design of gradient-index microlenses for stacked planar optics," Appl. Opt. 33, 3409-3414 (1994).
[CrossRef] [PubMed]

S. Calixto and G. Paez Padilla, "Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation," Appl. Opt. 35, 6126-6130 (1996).
[CrossRef] [PubMed]

M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Appl. Opt. 37, 627-631 (1998).
[CrossRef]

S. Calixto and M. S. Scholl, "Relief optical microelements fabricated with dichromated gelatin," Appl. Opt. 36, 2101-2106 (1997).
[CrossRef] [PubMed]

S. Mihailov and S. Lazare, "Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon," Appl. Opt. 32, 6211-6218 (1993).
[CrossRef] [PubMed]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 30, 4772-4778 (1997).
[CrossRef]

D. Pantelic and B. Muric, "Improving the holographic sensitivity of dichromated gelatin in the blue green part of the spectrum by sensitization with xanthene dyes," Appl. Opt. 40, 2871-2875 (2001).
[CrossRef]

G. Da Costa and J. Calatroni, "Transient deformation of liquid surfaces by laser-induced thermocapillarity," Appl. Opt. 18, 233-235 (1979).
[CrossRef]

R. A. Duarte-Quiroga and S. Calixto, "Dynamical optical microelements on dye-sensitized gels," Appl. Opt. 39, 3948-3954 (2000).
[CrossRef]

G. Da Costa and J. Calatroni, "Self-holograms of laser-induced surface depressions in heavy hydrocarbons (ET)," Appl. Opt. 17, 2381-2385 (1978).
[CrossRef]

IEEE Trans. Semicond. Manuf. (1)

Y. Fu and N. K. Bryan, "Semiconductor microlenses fabricated by one-step focused ion beam direct writing," IEEE Trans. Semicond. Manuf. 15, 229-231 (2002).
[CrossRef]

J. Am. Chem. Soc. (1)

C. D. Jones, M. J. Serpe, L. Schroeder, and L. A. Lyon, "Microlens formation in microgel/gold colloid composite materials via photothermal patterning," J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (2)

M. He, X-C Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, "Single-step fabrication array in sol-gel material writing and its application coupling," J. Opt. A: Pure Appl. Opt. 6, 94-97 (2004).
[CrossRef]

N. Lindlein, "Simulation of micro-optical systems including microlens arrays," J. Opt. A: Pure Appl. Opt. 4, S1-S9 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Langmuir (1)

M-H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312-9318 (2002).
[CrossRef]

Microelectron Eng. (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron Eng. 60, 365-379 (2002).
[CrossRef]

Opt. Express (3)

Photon. Spectra (1)

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, "Light tamers," Photon. Spectra 38, 58-65 (2004).

Pure Appl. Opt. (3)

Ph. Nussbaum, R. Völkely, H. P. Herzig, M. Eisner, and S. Haselbeck, "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997).
[CrossRef]

R. Grunwald, S. Woggon, R. Ehlert, and W. Reinecke, "Thin-film microlens arrays with nonspherical elements," Pure Appl. Opt. 6, 663-671 (1997).
[CrossRef]

V. Dhayalan, T. Standnes, J. J. Stamnes, and H. Heier, "Scalar and electromagnetic diffraction point-spread functions for high-NA microlenses," Pure Appl. Opt. 6, 603-615 (1997).
[CrossRef]

Other (1)

http://www.vidal.fr/Medicament/totlowbarhema-16626.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for the production of TESG microlenses.

Fig. 2
Fig. 2

(Color online) Diffraction pictures during the microlens formation-the scale in all figures is the same.

Fig. 3
Fig. 3

Variation of the number of diffraction rings with exposure during the lens formation.

Fig. 4
Fig. 4

(Color online) Five-by-five concave (divergent) lens array formed on the TESG layer.

Fig. 5
Fig. 5

(Color online) Experimentally recorded lens profile (r, radius; d, lens sag) and parabolic fit (dashed curve).

Fig. 6
Fig. 6

(Color online) Experimentally recorded lens profiles for a 2 × 2 lens array.

Fig. 7
Fig. 7

(Color online) (a) Calculated diffraction picture of a microlens; (b) radial scan of experimentally recorded diffraction picture (at the center, intensity is saturated due to the limited dynamic range of the CCD chip).

Fig. 8
Fig. 8

(Color online) Experimentally recorded lens profiles: (a) for a different exposure time at constant laser power; (b) for a different laser power at constant exposure time.

Fig. 9
Fig. 9

(Color online) Depth of the microlenses as a function of laser power.

Fig. 10
Fig. 10

(Color online) Experimentally recorded lens profiles in the focus of the laser beam and at distances of 1, 2, 3, and 4   mm from the focus.

Fig. 11
Fig. 11

Variation focal length with energy density.

Fig. 12
Fig. 12

Magnified picture of the USAF test chart through a TESG lens.

Metrics