Abstract

We present a new method to simultaneously reconstruct the images of oxyhemoglobin, deoxyhemoglobin, and water concentrations, as well as the volume fraction images of the scattering particles using continuous wave multispectral diffuse optical tomography with the absorption and scattering spectral prior constraints. In this method, the nonlinear relationship between the reduced scattering coefficient and the volume fraction and the size of the particles is linearized, allowing direct reconstruction of the volume fraction of scattering particles in tissues. The method is validated by a series of numerical simulations, phantom experiments, and in vivo clinical experiments. The initial clinical results indicate that the volume fraction of scattering particles in a malignant tumor is higher than that in a benign tumor.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).
    [CrossRef] [PubMed]
  2. H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
    [CrossRef] [PubMed]
  3. X. Gu, Q. Z. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
    [CrossRef] [PubMed]
  4. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001).
    [CrossRef] [PubMed]
  5. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
    [CrossRef] [PubMed]
  6. Q. Z. Zhang and H. B. Jiang, "Three-dimensional diffuse optical tomography of simulated hand joints with a 64 × 64-channel photodiodes-based optical system," J. Opt. A 7, 224-231 (2005).
    [CrossRef]
  7. K. D. Paulsen and H. B. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995).
    [CrossRef] [PubMed]
  8. N. Iftimia and H. B. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000).
    [CrossRef]
  9. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997).
    [CrossRef] [PubMed]
  10. Y. Xu, X. Gu, T. Khan, and H. B. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002).
    [CrossRef] [PubMed]
  11. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging 20, 1334-1340 (2001).
    [CrossRef]
  12. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995).
    [CrossRef]
  13. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, "Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography," Opt. Lett. 28, 2339-2341 (2003).
    [CrossRef] [PubMed]
  14. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
    [CrossRef] [PubMed]
  15. C. Q. Li and H. B. Jiang, "Measurement of particle-size distribution and concentration in heterogeneous turbid media with multispectral diffuse optical tomography," Appl. Opt. 44, 1838-1844 (2005).
    [CrossRef] [PubMed]
  16. C. Q. Li and H. B. Jiang, "Imaging of particle size and concentration in heterogeneous turbid media with multispectral diffuse optical tomography," Opt. Express 12, 6313-6318 (2004).
    [CrossRef] [PubMed]
  17. H. Jiang, J. Pierce, J. Kao, and E. Sevick-Muraca, "Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques," Appl. Opt. 36, 3310-3318 (1997).
    [CrossRef] [PubMed]
  18. H. B. Jiang, "Enhanced photon-migration methods for particle sizing in concentrated suspensions," AIChE. J. 44, 1740-1744 (1998).
    [CrossRef]
  19. G. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  20. C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64 × 64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
    [CrossRef] [PubMed]
  21. C. Q. Li and H. B. Jiang, "A calibration method in diffuse optical tomography," J. Opt. A 6, 844-852 (2004).
    [CrossRef]
  22. N. Iftimia and H. Jiang, "Quantitative optical image reconstruction of turbid media by using direct-current measurements," Appl. Opt. 39, 5256-5261 (2000).
    [CrossRef]
  23. C. Q. Li, "Breast cancer detection with diffuse optical tomography," Ph.D. dissertation (University of Florida, 2006).
  24. J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells," Cancer Cytopathol. 84, 366-374 (1998).
    [CrossRef]
  25. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, "Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy," Cell Biophys. 23, 91-109 (1993).
    [PubMed]
  26. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
    [CrossRef]
  27. X. Li, Z. G. Chen, A. Taflove, and V. Backman, "Equiphase-sphere approximation for analysis of light scattering by arbitrarily shaped nonspherical particles," Appl. Opt. 43, 4497-4505 (2004).
    [CrossRef] [PubMed]
  28. X. Li, A. Taflove, and V. Backman, "Quantitative analysis of depolarization of backscattered light by stochastically inhomogeneous dielectric particles," Opt. Lett. 30, 902-904 (2005).
    [CrossRef] [PubMed]

2006 (1)

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64 × 64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (4)

X. Li, Z. G. Chen, A. Taflove, and V. Backman, "Equiphase-sphere approximation for analysis of light scattering by arbitrarily shaped nonspherical particles," Appl. Opt. 43, 4497-4505 (2004).
[CrossRef] [PubMed]

C. Q. Li and H. B. Jiang, "Imaging of particle size and concentration in heterogeneous turbid media with multispectral diffuse optical tomography," Opt. Express 12, 6313-6318 (2004).
[CrossRef] [PubMed]

X. Gu, Q. Z. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

C. Q. Li and H. B. Jiang, "A calibration method in diffuse optical tomography," J. Opt. A 6, 844-852 (2004).
[CrossRef]

2003 (2)

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, "Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography," Opt. Lett. 28, 2339-2341 (2003).
[CrossRef] [PubMed]

2002 (2)

Y. Xu, X. Gu, T. Khan, and H. B. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002).
[CrossRef] [PubMed]

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

2001 (2)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging 20, 1334-1340 (2001).
[CrossRef]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001).
[CrossRef] [PubMed]

2000 (3)

1998 (3)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells," Cancer Cytopathol. 84, 366-374 (1998).
[CrossRef]

H. B. Jiang, "Enhanced photon-migration methods for particle sizing in concentrated suspensions," AIChE. J. 44, 1740-1744 (1998).
[CrossRef]

1997 (2)

1995 (2)

A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995).
[CrossRef]

K. D. Paulsen and H. B. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995).
[CrossRef] [PubMed]

1993 (1)

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, "Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy," Cell Biophys. 23, 91-109 (1993).
[PubMed]

Acad. Radiol. (2)

H. Jiang, N. Iftimia, Y. Xu, J. Eggert, L. Fajardo, and K. Klove, "Near-infrared optical imaging of the breast with model-based reconstruction," Acad. Radiol. 9, 186-194 (2002).
[CrossRef] [PubMed]

X. Gu, Q. Z. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumors in the breast with diffuse optical tomography," Acad. Radiol. 11, 53-60 (2004).
[CrossRef] [PubMed]

AIChE. J. (1)

H. B. Jiang, "Enhanced photon-migration methods for particle sizing in concentrated suspensions," AIChE. J. 44, 1740-1744 (1998).
[CrossRef]

Appl. Opt. (8)

H. Jiang, J. Pierce, J. Kao, and E. Sevick-Muraca, "Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques," Appl. Opt. 36, 3310-3318 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997).
[CrossRef] [PubMed]

N. Iftimia and H. B. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000).
[CrossRef]

N. Iftimia and H. Jiang, "Quantitative optical image reconstruction of turbid media by using direct-current measurements," Appl. Opt. 39, 5256-5261 (2000).
[CrossRef]

Y. Xu, X. Gu, T. Khan, and H. B. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002).
[CrossRef] [PubMed]

X. Li, Z. G. Chen, A. Taflove, and V. Backman, "Equiphase-sphere approximation for analysis of light scattering by arbitrarily shaped nonspherical particles," Appl. Opt. 43, 4497-4505 (2004).
[CrossRef] [PubMed]

C. Q. Li and H. B. Jiang, "Measurement of particle-size distribution and concentration in heterogeneous turbid media with multispectral diffuse optical tomography," Appl. Opt. 44, 1838-1844 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Cancer Cytopathol. (1)

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson, and J. P. Freyer, "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells," Cancer Cytopathol. 84, 366-374 (1998).
[CrossRef]

Cell Biophys. (1)

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, "Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy," Cell Biophys. 23, 91-109 (1993).
[PubMed]

IEEE Trans. Med. Imaging (1)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, "Three-dimensional optical tomographic imaging of breast in a human subject," IEEE Trans. Med. Imaging 20, 1334-1340 (2001).
[CrossRef]

J. Opt. A (2)

Q. Z. Zhang and H. B. Jiang, "Three-dimensional diffuse optical tomography of simulated hand joints with a 64 × 64-channel photodiodes-based optical system," J. Opt. A 7, 224-231 (2005).
[CrossRef]

C. Q. Li and H. B. Jiang, "A calibration method in diffuse optical tomography," J. Opt. A 6, 844-852 (2004).
[CrossRef]

Med. Phys. (2)

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64 × 64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

K. D. Paulsen and H. B. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

Phys. Today (1)

A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. USA 100, 12349-12354 (2003).
[CrossRef] [PubMed]

Other (2)

C. Q. Li, "Breast cancer detection with diffuse optical tomography," Ph.D. dissertation (University of Florida, 2006).

G. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Test geometry for numerical simulation (a) case 1 and (b) case 2, where D = 50   mm , d = 10   mm , and D offset = 25   mm for case 1 and D = 70   mm , d = 20   mm , and D offset = 40   mm for case 2.

Fig. 2
Fig. 2

(Color online) Reconstructed volume fraction images for (a), (d) 150   nm particles, (b), (e) 1000   nm particles, and (c), (f) 6000   nm particles, with measured data at 8 wavelengths [images from (a) to (c)] and at 20 wavelengths [from (d) to (f)] when only the volume fraction images are reconstructed.

Fig. 3
Fig. 3

(Color online) Reconstructed images of concentrations of (a), (f), (k) HbO 2 , (b), (g), (l) Hb, (d), (i), (n) water and volume fractions of 1000   nm particles and 6000   nm particles. The images at the left column and the middle column were reconstructed without noise added in the measured data.

Fig. 4
Fig. 4

(Color online) Reconstructed images of total hemoglobin concentrations in μM of phantom experiments (a) case 1, (b) case 2, (c) case 3, and (d) case 4.

Fig. 5
Fig. 5

(Color online) Reconstructed concentration images of (a), (f) HbO 2 , (b), (g) Hb, (c), (h) water, and volume fraction images of (d), (i) 1000   nm particles and (e), (j) 6000   nm particles for patient 1 [the left column images from (a) to (e)] and for patient 2 [the right column images from from (f) to (j)].

Tables (2)

Tables Icon

Table 1 Volume Fraction of Different Particles in the Background and the Three Targets Used for Numerical Simulation Case 1

Tables Icon

Table 2 Concentrations of Absorption Chromophores and Volume Fractions of Different Particles in the Background and the Five Targets Used for Numerical Simulation Case 2

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

μ a ( λ ) = l = 1 L C l ε l ( λ ) ,
μ s ( λ ) = 0 3 Q scat ( x , n , λ ) [ 1 g ( x , n , λ ) ] 2 x ϕ f ( x ) d x ,
f ( x ) = 1 2 π b 2 e [ ( x a ) 2 / 2 b 2 ] ,
μ s m ( λ ) = 0 3 Q scat ( x , n , λ ) [ 1 g ( x , n , λ ) ] 2 x 1 2 π b 2 × e [ ( x a m ) 2 / 2 b 2 ] d x   for   m = 1,   .   .   .   ,   M ,
μ s ( λ ) = m = 1 M ϕ m μ s m ( λ ) ,
Φ λ = 𝔍 C 1 , λ C 1 + + 𝔍 C L , λ C L + 𝔍 ϕ 1 , λ ϕ 1 + + 𝔍 ϕ M , λ ϕ M ,
𝔍 C l , λ = ( Φ μ a μ a C l ) λ = ( 𝔍 μ a ε l ) λ ,
for  l = 1 ,   .   .   .   ,   L ,
𝔍 ϕ m , λ = ( Φ μ s μ s ϕ m ) λ = ( 𝔍 κ ( 3 κ 2 ) μ s m ) λ ,
for  m = 1 ,   .   .   .   ,   M .
( Φ λ 1 Φ λ 2 Φ λ W ) = [ 𝔍 C 1 , λ 1 𝔍 C L , λ 1 𝔍 ϕ 1 , λ 1 𝔍 ϕ M , λ 1 𝔍 C 1 , λ 2 𝔍 C L , λ 2 𝔍 ϕ 1 , λ 2 𝔍 ϕ M , λ 2 𝔍 C 1 , λ W 𝔍 C L , λ W 𝔍 ϕ 1 , λ W 𝔍 ϕ M , λ W ] × ( C 1 C L ϕ 1 ϕ M ) ,

Metrics