Abstract

The use of the time gating technique for lifetime reconstruction in the Fourier domain is a novel technique. Time gating provides sufficient data points in the time domain for reliable application of the Fourier transform, which is essential for the time deconvolution of the system of the integral equations employed in the reconstruction. The Fourier domain telegraph equation is employed to model the light transport, which allows a sufficiently broad interval of frequencies to be covered. Reconstructed images contain enough information needed for recovering the lifetime distribution in a sample for any given frequency within the megahertz–gigahertz band. The use of this technique is essential for recovering time-dependent information in fluorescence imaging. This technique was applied in reconstruction of the lifetime distribution of four tubes filled with Rhodamine 6G embedded inside a highly scattering slab. Relatively accurate fluorescence lifetime reconstruction demonstrates the effectiveness and the potential of the proposed technique.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Shives, Y. Xu, and H. Jiang, "Fluorescence lifetime tomography in turbid media based on an oxygen-sensitive dye," Opt. Express 10, 1557-1562 (2002).
    [PubMed]
  2. V. Y. Soloviev, D. F. Wilson, and S. A. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the inverse problem and experimental image reconstruction," Appl. Opt. 43, 564-574 (2004).
    [CrossRef] [PubMed]
  3. S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, "Tomographic imaging of oxygen by phosphorescence lifetime," Appl. Opt. 45, 8547-8559 (2006).
    [CrossRef] [PubMed]
  4. S. Lam, F. Lesage, and X. Intes, "Time domain fluorescence diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
    [CrossRef] [PubMed]
  5. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005).
    [CrossRef]
  6. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006).
    [CrossRef]
  7. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
    [CrossRef] [PubMed]
  8. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
    [CrossRef] [PubMed]
  9. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
    [CrossRef] [PubMed]
  10. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, and D. Ben-Amotz, "Frequency domain modeling of reradiation in highly scattering media," Appl. Opt. 36, 2252-2259 (1997).
    [CrossRef] [PubMed]
  11. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  12. A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
    [CrossRef] [PubMed]
  13. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vladas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003).
    [CrossRef] [PubMed]
  14. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
    [CrossRef] [PubMed]
  15. V. Y. Soloviev, "Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging," Med. Phys. 33, 4176-4183 (2006).
    [CrossRef] [PubMed]
  16. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006).
    [CrossRef] [PubMed]
  17. V. Soloviev, D. Wilson, and S. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the forward problem," Appl. Opt. 42, 113-123 (2003).
    [CrossRef] [PubMed]
  18. D. J. Durian and J. Rundick, "Photon migration at short times and distances and in case of strong absorption," J. Opt. Soc. Am. 14, 235-245 (1997).
    [CrossRef]
  19. J. Ripoll, R. B. Schultz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901 (2003).
    [CrossRef] [PubMed]
  20. R. B. Schulz, J. Peter, W. Semmler, C. D'Andrea, G. Valentini, and R. Cubeddu, "Comparison of noncontact and fiber-based fluorescence-mediated tomography," Opt. Lett. 31, 769-771 (2006).
    [CrossRef] [PubMed]
  21. V. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, 1963).
  22. S. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
    [CrossRef]
  23. V. Y. Soloviev and L. V. Krasnosselskaia, "Consideration of a spread-out source in problems of near-infrared optical tomography," Appl. Opt. 45, 4765-4775 (2006).
    [CrossRef] [PubMed]
  24. V. Y. Soloviev and L. V. Krasnosselskaia, "Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography," Appl. Opt. 45, 2828-2837 (2006).
    [CrossRef] [PubMed]
  25. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).
  26. M. Firbank, "The design, calibration, and usage of a solid scattering and absorbing phantom for near-infrared spectroscopy," Ph.D. dissertation (University College, London, 1994).
  27. K. Tahir and C. Dainty, "Experimental measurements of light scattering from samples with specified optical properties," J. Opt. A , Pure Appl. Opt. 7, 207-214 (2005).
    [CrossRef]
  28. F. Bohren, "Recurrence relations for the Mie scattering coefficients," J. Opt. Soc. Am. A 4, 612-613 (1987).
    [CrossRef]
  29. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
    [CrossRef]

2006

S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, "Tomographic imaging of oxygen by phosphorescence lifetime," Appl. Opt. 45, 8547-8559 (2006).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006).
[CrossRef]

A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
[CrossRef] [PubMed]

V. Y. Soloviev, "Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging," Med. Phys. 33, 4176-4183 (2006).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006).
[CrossRef] [PubMed]

R. B. Schulz, J. Peter, W. Semmler, C. D'Andrea, G. Valentini, and R. Cubeddu, "Comparison of noncontact and fiber-based fluorescence-mediated tomography," Opt. Lett. 31, 769-771 (2006).
[CrossRef] [PubMed]

V. Y. Soloviev and L. V. Krasnosselskaia, "Consideration of a spread-out source in problems of near-infrared optical tomography," Appl. Opt. 45, 4765-4775 (2006).
[CrossRef] [PubMed]

V. Y. Soloviev and L. V. Krasnosselskaia, "Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography," Appl. Opt. 45, 2828-2837 (2006).
[CrossRef] [PubMed]

2005

K. Tahir and C. Dainty, "Experimental measurements of light scattering from samples with specified optical properties," J. Opt. A , Pure Appl. Opt. 7, 207-214 (2005).
[CrossRef]

S. Lam, F. Lesage, and X. Intes, "Time domain fluorescence diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
[CrossRef] [PubMed]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005).
[CrossRef]

2004

V. Y. Soloviev, D. F. Wilson, and S. A. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the inverse problem and experimental image reconstruction," Appl. Opt. 43, 564-574 (2004).
[CrossRef] [PubMed]

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

2003

2002

1999

S. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
[CrossRef]

1997

1996

1994

1987

Alvarez, F.

Apreleva, S. V.

Arridge, S.

S. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
[CrossRef]

Bacskai, B. J.

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006).
[CrossRef]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005).
[CrossRef]

Bangerth, W.

A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
[CrossRef] [PubMed]

Ben-Amotz, D.

Benninger, R.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Boas, D. A.

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006).
[CrossRef]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005).
[CrossRef]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef] [PubMed]

Bohren, F.

Bouman, C. A.

Boverman, G.

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006).
[CrossRef]

Chance, B.

Cubeddu, R.

Dainty, C.

K. Tahir and C. Dainty, "Experimental measurements of light scattering from samples with specified optical properties," J. Opt. A , Pure Appl. Opt. 7, 207-214 (2005).
[CrossRef]

D'Andrea, C.

Davis, D.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Davis, D. M.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Dunn, A. K.

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005).
[CrossRef]

Dunsby, C.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Durian, D. J.

Elson, D.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Elson, D. S.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vladas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003).
[CrossRef] [PubMed]

Engl, H. W.

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

Firbank, M.

M. Firbank, "The design, calibration, and usage of a solid scattering and absorbing phantom for near-infrared spectroscopy," Ph.D. dissertation (University College, London, 1994).

French, P.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

French, P. M. W.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vladas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003).
[CrossRef] [PubMed]

Galletly, N.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Gambaruto, G. L.

Gao, F.

Hanke, M.

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

Hutchinson, C. L.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef] [PubMed]

Hwan, K.

A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
[CrossRef] [PubMed]

Intes, X.

Jiang, H.

Joshi, A.

A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
[CrossRef] [PubMed]

Krasnosselskaia, L. V.

Kumar, A. T. N.

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006).
[CrossRef]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005).
[CrossRef]

Lam, S.

Lanigan, P.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Lanigan, P. M. P.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

LaPlant, F. P.

Lee, K. C. B.

Lesage, F.

Leveque-Fort, S.

Lever, J.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Lever, M. J.

Li, X. D.

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef] [PubMed]

McCann, F.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

McGinty, J.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Millane, R. P.

Milstein, A. B.

Munro, I.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Neil, M.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Neil, M. A. A.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Neubauer, A.

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

Ntziachristos, V.

J. Ripoll, R. B. Schultz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

Oh, S.

O'Leary, M. A.

Onfelt, B.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Patterson, M. S.

Peter, J.

Phillips, D.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

Rasmussen, J. C.

A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
[CrossRef] [PubMed]

Raymond, S. B.

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006).
[CrossRef]

Reavell, F.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Requejo-Isidro, J.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Reynolds, J. S.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef] [PubMed]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, and D. Ben-Amotz, "Frequency domain modeling of reradiation in highly scattering media," Appl. Opt. 36, 2252-2259 (1997).
[CrossRef] [PubMed]

Ripoll, J.

J. Ripoll, R. B. Schultz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

Rundick, J.

Sandison, A.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vladas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003).
[CrossRef] [PubMed]

Schultz, R. B.

J. Ripoll, R. B. Schultz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

Schulz, R. B.

Seigel, J.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Semmler, W.

Sevick-Muraca, E. M.

A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef] [PubMed]

Shives, E.

Siegel, J.

Skoch, J.

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005).
[CrossRef]

Sobolev, V. V.

V. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, 1963).

Soloviev, V.

Soloviev, V. Y.

Stamp, G.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Stamp, G. W. H.

Suhling, K.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Tadrous, P.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Tadrous, P. J.

Tahir, K.

K. Tahir and C. Dainty, "Experimental measurements of light scattering from samples with specified optical properties," J. Opt. A , Pure Appl. Opt. 7, 207-214 (2005).
[CrossRef]

Talbot, C.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Tanikawa, Y.

Thompson, C. A.

Treanor, B.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Troy, T. L.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef] [PubMed]

Valentini, G.

Vinogradov, S.

Vinogradov, S. A.

Vladas, A.

Wallace, A.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Wallace, A. L.

Watson, T. F.

Webb, K. J.

Webb, S.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Webb, S. E. D.

Wilson, D.

Wilson, D. F.

Xu, Y.

Yamada, Y.

Yodh, A. G.

Zhang, Q.

Zhao, H.

Appl. Opt.

V. Y. Soloviev, D. F. Wilson, and S. A. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the inverse problem and experimental image reconstruction," Appl. Opt. 43, 564-574 (2004).
[CrossRef] [PubMed]

S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, "Tomographic imaging of oxygen by phosphorescence lifetime," Appl. Opt. 45, 8547-8559 (2006).
[CrossRef] [PubMed]

M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
[CrossRef] [PubMed]

J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, and D. Ben-Amotz, "Frequency domain modeling of reradiation in highly scattering media," Appl. Opt. 36, 2252-2259 (1997).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vladas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003).
[CrossRef] [PubMed]

V. Soloviev, D. Wilson, and S. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the forward problem," Appl. Opt. 42, 113-123 (2003).
[CrossRef] [PubMed]

V. Y. Soloviev and L. V. Krasnosselskaia, "Consideration of a spread-out source in problems of near-infrared optical tomography," Appl. Opt. 45, 4765-4775 (2006).
[CrossRef] [PubMed]

V. Y. Soloviev and L. V. Krasnosselskaia, "Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography," Appl. Opt. 45, 2828-2837 (2006).
[CrossRef] [PubMed]

Inverse Probl. Eng.

S. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999).
[CrossRef]

J. Opt. A

K. Tahir and C. Dainty, "Experimental measurements of light scattering from samples with specified optical properties," J. Opt. A , Pure Appl. Opt. 7, 207-214 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. D

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004).
[CrossRef]

Med. Phys.

V. Y. Soloviev, "Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging," Med. Phys. 33, 4176-4183 (2006).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci.

D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. Ripoll, R. B. Schultz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901 (2003).
[CrossRef] [PubMed]

Other

V. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, 1963).

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

M. Firbank, "The design, calibration, and usage of a solid scattering and absorbing phantom for near-infrared spectroscopy," Ph.D. dissertation (University College, London, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Phantom and the positions of tubes filled with Rhodamine 6G.

Fig. 2
Fig. 2

(Color online) Experimental setup. M1–M5, mirrors; P, prism; F, long pass filter. Mirror M3 has a triangular-shaped slit positioned directly in front of it. Sample is mounted on a motorized translation stage to produce different source positions.

Fig. 3
Fig. 3

(Color online) Graph showing the average image intensity as a function of time-gated image delay, including gated images at delays of (a) 0, (b) 5, and (c) 8 .6   ns .

Fig. 4
Fig. 4

Slice y = 25   mm showing the reconstructed quantum yield distribution at ω = 0 .

Fig. 5
Fig. 5

Reconstructed real and imaginary parts of the function Q ( r ; ω ) at ω = 1   GHz .

Fig. 6
Fig. 6

Reconstructed lifetime distribution from real and imaginary parts of the function Q ( r ;    ω ) at ω = 1   GHz .

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

I ν ( r , s , t ) d ν d s = h ν c f ( ν , r , s , t ) d ν d s
U ν ( r , t ) = h ν ( 4 π ) f d s = 1 c ( 4 π ) I ν d s .
d N p = f d 3 r p d s p , d 3 r p = ( n p s p ) c d t d S p ,
N p ( t ) = c d t d S p Ω p w ( s p , s 0 ) f ( r , s p , t ) ( n p s p ) d s p ,
N p ( t ) 2 π c d t d S p f ( r , s 0 , t ) ( n p s 0 ) .
N p ( t ) = g ν ( t t ) N p ( t ) d t .
E p ( t ) 2 π Δ t Δ S p ( n p s 0 ) g ν ( t t ) I ν ( r , s 0 , t ) d t ,
E p ( ω ) 2 π Δ t Δ S p ( n p s 0 ) g ν ( ω ) I ν ( r , s 0 , ω ) .
g ν ( ω ) = g 0 exp [ i ω ( t d + Δ t / 2 ) ] sinc ( ω Δ t / 2 ) .
( s , I ν ) = γ 0 I ν + μ s 4 π ( 4 π ) p ( s s ) I ν ( s ) d s + p ( s s s ) S 0 ,
S 0 = ϖ 0 N 0 h ν Λ ( r r 0 ) exp [ i ω ( t 0 + | r r 0 | / c ) ] ,
Λ ( r r 0 ) = μ t r ( r ) 4 π | r r 0 | 2 exp ( 0 | r r 0 | μ t r ( r ) d l ) ,
γ 0 = μ t r ( 1 + i ω / c μ t r ) ,
S 0 ( t ) = ϖ 0 N 0 h ν Λ 0 ( r r 0 ) δ ( t t 0 | r r 0 | / c ) ,
Λ 0 ( r r 0 ) μ t r exp ( μ t r | r r 0 | ) / 4 π | r r 0 | 2 ,
S 0 ϖ 0 N 0 h ν δ ( r r 0 ) exp ( i ω δ t / 2 ) sinc ( ω δ t / 2 ) .
H ν ( r , ω ) = ( 4 π ) I ν ( r , s , ω ) s d s ,
H ν + c q U ν = S 0 , H ν ( c / 3 γ 1 ) U ν ,
q = μ a ( 1 + i ω / c μ a ) , γ 1 = γ 0 μ s g ,
I ν c 4 π U ν + 3 4 π s H ν ,
E p ( ω ) c Δ t Δ S p ( n p s 0 ) g ν ( ω ) U ν ( r , ω ) .
q ν * ( r , t t ) = q 0 H ( t t ) 0 F ( r , τ ) exp ( t t τ ) d τ τ ,
N ν * ( r ; t ) = μ a μ s h ν d 3 r t 0 t q ν * ( r , t t ) × U ν ( r , r 0 ; t t 0 ) d t .
( 1 / 3 γ 1 * ) G ν * q * G ν * = μ s * δ ( r r ) exp ( i ω t ) ,
N ν * ( r ; t ) = d 3 r t 0 t N ν * ( r , t ) G ν * ( r , r ; t t ) d t ,
E p ( r ; t ) = c Δ t Δ S p ( n p s 0 ) ( ν * / ν ) V d 3 r ( μ a / μ s ) × d t d t d t g ν * ( t t ) q ν * ( r ; t t ) × G ν * ( r , r ; t t ) U ν ( r ′,   r 0 ; t t 0 ) ,
E p ( r ; ω ) c Δ t Δ S p ( n p s 0 ) ( ν * / ν ) V d 3 r ( μ a / μ s ) × G ν * ( r , r ; ω ) U ν ( r , r 0 ; ω ) Q 0 ( r ; ω ) ,
Q 0 ( r ; ω ) = g ν * ( ω ) q 0 ( r ) 0 F ( r , τ ) d τ 1 + i ω τ .
Q 0 ( r ; ω ) g ν * ( ω ) q 0 ( r ) 1 + i ω τ ( r ) ,
Re Q = q 0 Re g ν * ( ω ) + ω τ Im g ν * ( ω ) 1 + ( ω τ ) 2 ,
Im Q = q 0 Im g ν * ( ω ) ω τ Re g ν * ( ω ) 1 + ( ω τ ) 2 ,
τ A B ω B 2 ω 2 + ε ,
A = Im g ν * ( ω ) Re Q Re g ν * ( ω ) Im Q ,
B = Re g ν * ( ω ) Re Q + Im g ν * ( ω ) Im Q ,

Metrics