Abstract

A new optical system for transmission optical projection tomography (TOPT) is presented to reduce the divergence of the projection data from the true parallel projections. This is performed by introducing an iris at the back focus of the objective lens. The influence of the defocusing on TOPT is demonstrated by computational simulations and experiments. We compare the performances of the new and conventional TOPT systems in order to optimize the optical system for three-dimensional imaging of the embryos of small animals. The optimal imaging performance is given by the new system with numerical apertures between 0.007 and 0.014, with which the spatial resolution of 25μm is achieved. The optimal configuration is validated by TOPT of a phantom sample and a fixed five-day chick embryo.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, "Optical projection tomography as a tool for 3D microscopy and gene expression studies," Science 296, 541-545 (2002).
    [CrossRef] [PubMed]
  2. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, Sci. Online at www.sciencemag.org/cgi/content/full/296/5567/541/DC1.
  3. R. J. Bryson Richardson and P. D. Currie, "Optical projection tomography for spatio-temporal analysis in the Zebrafish," Methods Cell Biol. 76, 37-50 (2004).
    [CrossRef]
  4. M. Oldham, H. Sakhalkar, Y. M. Wang, P. Guo, T. Oliver, R. Bentley, Z. Vujaskovic, and M. Dewhirst, "Three-dimensional imaging of whole rodent organs using optical computed and emission tomography," J. Biomed. Opt. 12, 014009-1-10 (2007).
    [CrossRef] [PubMed]
  5. M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, "Three dimensional imaging of xenograft tumors using optical computed and emission tomography," Med. Phys. 33, 3193-3202 (2006).
    [CrossRef] [PubMed]
  6. M. Oldham, T. Oliver, and M. Dewhirst, "Optical imaging of tumor microvasculature in 3D," Med. Phys. 32, 2134 (2005).
    [CrossRef]
  7. J. C. Gore, M. Ranade, M. J. Maryanski, and R. J. Schulz, "Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner," Phys. Med. Biol. 41, 2695-2704 (1996).
    [CrossRef] [PubMed]
  8. R. G. Kelly, K. J. Jordan, and J. J. Battista, "Optical CT reconstruction of 3-D dose distributions using the ferrous-benzoic-xylenol (FBX) gel dosimeter," Med. Phys. 25, 1741-1750 (1998).
    [CrossRef] [PubMed]
  9. J. G. Wolodzko, C. Marsden, and A. Appleby, "CCD imaging for optical tomography of gel radiation dosimeters," Med. Phys. 26, 2508-2513 (1999).
    [CrossRef] [PubMed]
  10. S. J. Doran, K. K. Koerkamp, M. A. Bero, P. Jenneson, E. J. Morton, and W. B. Gilboy, "A CCD-based optical CT scanner for high-resolution 3-D imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results," Phys. Med. Biol. 46, 3191-3213 (2001).
    [CrossRef]
  11. N. Krstajic and S. J. Doran, "Focusing optics of a parallel beam CCD optical tomography apparatus for 3-D radiation gel dosimetry," Phys. Med. Biol. 51, 2055-2075 (2006).
    [CrossRef] [PubMed]
  12. J. Kerwin, M. Scott, J. Sharpe, L. Puelles, S. C. Robson, M. Martnez-de-la-Torre, J. L. Ferran, G. Feng, R. A. Baldock, T. Strachan, D. Davidson, and S. Lindsay, "3 dimensional modelling of early human brain development using optical projection tomography," BMC Neurosci. 5, 27 (2004).
    [CrossRef] [PubMed]
  13. I. Von Both, C. Silvestri, T. Erdemir, H. Lickert, J. R. Walls, R. M. Henkelman, J. Rossant, R. P. Harvey, L. Attisano, and J. L. Wrana, "Foxh1 is essential for development of the anterior heart field," Developmental Cell 7, 331-345 (2004).
    [CrossRef] [PubMed]
  14. H. Lickert, J. K. Takeuchi, I. Von Both, J. R. Walls, F. McAuliffe, S. L. Adamson, R. M. Henkelman, J. L. Wrana, J. Rossant, and B. G. Bruneau, "Baf60c is essential for function of BAF chromatin remodelling complexes in heart development," Nature 432, 107-112 (2004).
    [CrossRef] [PubMed]
  15. Y. Wang and R. K. Wang, "Imaging using parallel integrals in optical projection tomography," Phys. Med. Biol. 51, 6023-6032 (2006).
    [CrossRef] [PubMed]
  16. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, "Correction of artefacts in optical projection tomography," Phys. Med. Biol. 50, 4645-4665 (2005).
    [CrossRef] [PubMed]
  17. M. Xu and L. H. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imaging 21, 814-822 (2002).
    [CrossRef] [PubMed]

2007 (1)

M. Oldham, H. Sakhalkar, Y. M. Wang, P. Guo, T. Oliver, R. Bentley, Z. Vujaskovic, and M. Dewhirst, "Three-dimensional imaging of whole rodent organs using optical computed and emission tomography," J. Biomed. Opt. 12, 014009-1-10 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, "Three dimensional imaging of xenograft tumors using optical computed and emission tomography," Med. Phys. 33, 3193-3202 (2006).
[CrossRef] [PubMed]

N. Krstajic and S. J. Doran, "Focusing optics of a parallel beam CCD optical tomography apparatus for 3-D radiation gel dosimetry," Phys. Med. Biol. 51, 2055-2075 (2006).
[CrossRef] [PubMed]

Y. Wang and R. K. Wang, "Imaging using parallel integrals in optical projection tomography," Phys. Med. Biol. 51, 6023-6032 (2006).
[CrossRef] [PubMed]

2005 (2)

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, "Correction of artefacts in optical projection tomography," Phys. Med. Biol. 50, 4645-4665 (2005).
[CrossRef] [PubMed]

M. Oldham, T. Oliver, and M. Dewhirst, "Optical imaging of tumor microvasculature in 3D," Med. Phys. 32, 2134 (2005).
[CrossRef]

2004 (4)

R. J. Bryson Richardson and P. D. Currie, "Optical projection tomography for spatio-temporal analysis in the Zebrafish," Methods Cell Biol. 76, 37-50 (2004).
[CrossRef]

J. Kerwin, M. Scott, J. Sharpe, L. Puelles, S. C. Robson, M. Martnez-de-la-Torre, J. L. Ferran, G. Feng, R. A. Baldock, T. Strachan, D. Davidson, and S. Lindsay, "3 dimensional modelling of early human brain development using optical projection tomography," BMC Neurosci. 5, 27 (2004).
[CrossRef] [PubMed]

I. Von Both, C. Silvestri, T. Erdemir, H. Lickert, J. R. Walls, R. M. Henkelman, J. Rossant, R. P. Harvey, L. Attisano, and J. L. Wrana, "Foxh1 is essential for development of the anterior heart field," Developmental Cell 7, 331-345 (2004).
[CrossRef] [PubMed]

H. Lickert, J. K. Takeuchi, I. Von Both, J. R. Walls, F. McAuliffe, S. L. Adamson, R. M. Henkelman, J. L. Wrana, J. Rossant, and B. G. Bruneau, "Baf60c is essential for function of BAF chromatin remodelling complexes in heart development," Nature 432, 107-112 (2004).
[CrossRef] [PubMed]

2002 (2)

M. Xu and L. H. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imaging 21, 814-822 (2002).
[CrossRef] [PubMed]

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, "Optical projection tomography as a tool for 3D microscopy and gene expression studies," Science 296, 541-545 (2002).
[CrossRef] [PubMed]

2001 (1)

S. J. Doran, K. K. Koerkamp, M. A. Bero, P. Jenneson, E. J. Morton, and W. B. Gilboy, "A CCD-based optical CT scanner for high-resolution 3-D imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results," Phys. Med. Biol. 46, 3191-3213 (2001).
[CrossRef]

1999 (1)

J. G. Wolodzko, C. Marsden, and A. Appleby, "CCD imaging for optical tomography of gel radiation dosimeters," Med. Phys. 26, 2508-2513 (1999).
[CrossRef] [PubMed]

1998 (1)

R. G. Kelly, K. J. Jordan, and J. J. Battista, "Optical CT reconstruction of 3-D dose distributions using the ferrous-benzoic-xylenol (FBX) gel dosimeter," Med. Phys. 25, 1741-1750 (1998).
[CrossRef] [PubMed]

1996 (1)

J. C. Gore, M. Ranade, M. J. Maryanski, and R. J. Schulz, "Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner," Phys. Med. Biol. 41, 2695-2704 (1996).
[CrossRef] [PubMed]

BMC Neurosci. (1)

J. Kerwin, M. Scott, J. Sharpe, L. Puelles, S. C. Robson, M. Martnez-de-la-Torre, J. L. Ferran, G. Feng, R. A. Baldock, T. Strachan, D. Davidson, and S. Lindsay, "3 dimensional modelling of early human brain development using optical projection tomography," BMC Neurosci. 5, 27 (2004).
[CrossRef] [PubMed]

Developmental Cell (1)

I. Von Both, C. Silvestri, T. Erdemir, H. Lickert, J. R. Walls, R. M. Henkelman, J. Rossant, R. P. Harvey, L. Attisano, and J. L. Wrana, "Foxh1 is essential for development of the anterior heart field," Developmental Cell 7, 331-345 (2004).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

M. Xu and L. H. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Trans. Med. Imaging 21, 814-822 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

M. Oldham, H. Sakhalkar, Y. M. Wang, P. Guo, T. Oliver, R. Bentley, Z. Vujaskovic, and M. Dewhirst, "Three-dimensional imaging of whole rodent organs using optical computed and emission tomography," J. Biomed. Opt. 12, 014009-1-10 (2007).
[CrossRef] [PubMed]

Med. Phys. (4)

M. Oldham, H. Sakhalkar, T. Oliver, Y. M. Wang, Y. Cao, C. Badea, G. A. Johnson, and M. Dewhirst, "Three dimensional imaging of xenograft tumors using optical computed and emission tomography," Med. Phys. 33, 3193-3202 (2006).
[CrossRef] [PubMed]

M. Oldham, T. Oliver, and M. Dewhirst, "Optical imaging of tumor microvasculature in 3D," Med. Phys. 32, 2134 (2005).
[CrossRef]

R. G. Kelly, K. J. Jordan, and J. J. Battista, "Optical CT reconstruction of 3-D dose distributions using the ferrous-benzoic-xylenol (FBX) gel dosimeter," Med. Phys. 25, 1741-1750 (1998).
[CrossRef] [PubMed]

J. G. Wolodzko, C. Marsden, and A. Appleby, "CCD imaging for optical tomography of gel radiation dosimeters," Med. Phys. 26, 2508-2513 (1999).
[CrossRef] [PubMed]

Methods Cell Biol. (1)

R. J. Bryson Richardson and P. D. Currie, "Optical projection tomography for spatio-temporal analysis in the Zebrafish," Methods Cell Biol. 76, 37-50 (2004).
[CrossRef]

Nature (1)

H. Lickert, J. K. Takeuchi, I. Von Both, J. R. Walls, F. McAuliffe, S. L. Adamson, R. M. Henkelman, J. L. Wrana, J. Rossant, and B. G. Bruneau, "Baf60c is essential for function of BAF chromatin remodelling complexes in heart development," Nature 432, 107-112 (2004).
[CrossRef] [PubMed]

Phys. Med. Biol. (5)

Y. Wang and R. K. Wang, "Imaging using parallel integrals in optical projection tomography," Phys. Med. Biol. 51, 6023-6032 (2006).
[CrossRef] [PubMed]

J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, "Correction of artefacts in optical projection tomography," Phys. Med. Biol. 50, 4645-4665 (2005).
[CrossRef] [PubMed]

S. J. Doran, K. K. Koerkamp, M. A. Bero, P. Jenneson, E. J. Morton, and W. B. Gilboy, "A CCD-based optical CT scanner for high-resolution 3-D imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results," Phys. Med. Biol. 46, 3191-3213 (2001).
[CrossRef]

N. Krstajic and S. J. Doran, "Focusing optics of a parallel beam CCD optical tomography apparatus for 3-D radiation gel dosimetry," Phys. Med. Biol. 51, 2055-2075 (2006).
[CrossRef] [PubMed]

J. C. Gore, M. Ranade, M. J. Maryanski, and R. J. Schulz, "Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner," Phys. Med. Biol. 41, 2695-2704 (1996).
[CrossRef] [PubMed]

Science (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, "Optical projection tomography as a tool for 3D microscopy and gene expression studies," Science 296, 541-545 (2002).
[CrossRef] [PubMed]

Other (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, Sci. Online at www.sciencemag.org/cgi/content/full/296/5567/541/DC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of (a) the new and (b) the conventional optical systems of TOPT: CS, cross section of sample; LS, light source; D, diffuser; OX, optical axis; FP, front focal plane of the objective lens; RA, rotational axis; DIC, double inverted cone; OL, objective lens; CL, camera lens; RC, row of CCD array; I, iris at the back focal plane of the objective lens.

Fig. 2
Fig. 2

Results of computational simulations. (a), (b) The calculated 1D PSFs are displayed along the x axis, and the y axis represents the distance away from the object planes. The reconstructed images of the numerical phantom “modified Shepp–Logan”: (c), (d) obtained from the new configuration; (e), (f) obtained from the conventional configuration. The reconstructed images are coded as gray, white represents 255, and black represents 0.

Fig. 3
Fig. 3

Plot of the MSEs of the imaging results from the simulation data as a function of the numerical apertures for the new ( + ) and conventional ( o ) optical system, where the degrees of noise are denoted by “a” (no noise) and “b” ( SNR = 30   dB ) , respectively, and the fitted results are indicated by the solid curves.

Fig. 4
Fig. 4

Reconstructed cross sections of a phantom sample: (a), (b) obtained from the conventional configuration; (c) obtained from the new configuration. The line profiles along the broken lines in (a), (b), and (c) are shown respectively in (d), (e), and (f). The reconstructed images are coded as gray, white represents 255, and black represents 0.

Fig. 5
Fig. 5

Reconstructed cross sections of a fixed chick embryo: (a), (c) obtained from the optimal configuration; (b), (d) obtained from the conventional configuration with α = 4.2 ° . The reconstructed images are coded as gray, white represents 255, and black represents 0.

Metrics