Abstract

We present a number of recent evaluations of direct bonding, a glueless bonding technology, performed under ambient conditions. If combined with bond-strengthening, this geometry-conserving technology is well suited for an application in far ultraviolet immersion lithography. Our term beyond direct bonding refers to taking at least one additional technological step beyond direct bonding, involving chemical interface engineering, advanced silicon-on-insulator (SOI) technology, whereby the unwanted influence of dilatation mismatch is obviated. The combination of successive direct bonding, nanopillar lattice structures and silicon-technological engineering makes it possible for us to arrange quantum dots, wires, and planes in a transversal cascade. We also address the interrelationship between direct bonding and elasticity, as well as plasticity; the latter is in relation to direct bonded glass wafers that are thermally treated to create the geometric shape, e.g., required for specific lab-on-a-chip components with a three-dimensional overall configuration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Innys, Newton's Opticks: A Treatise of the Reflections, Refractions and Colours, MDCCLXXX, 4th ed. (McGraw-Hill, 1931), p. 199.
  2. Lord Rayleigh, "A study of glass surfaces in optical contact," Proc. R. Soc. London, Ser. A 156, 326-349 (1936).
    [CrossRef]
  3. J. D. Van der Waals, "Over de continuiteit van den gas-en vloeistoftoestand," Ph.D. dissertation (Sijthof, 1873) (in Dutch).
  4. F. Twijman and J. H. Dowell, "Improvements in or relating to length measurements by interferometer," U.K. patent 367,859 (26 February 1932).
  5. J. Haisma and S. J. Van Hoppe, "Laser comprising a block of insulating material containing a channel filled with gas," U.S. patent 3,387,226 (4 June 1968).
  6. K. Compaan and P. Kramer, "The Philips 'VLP' system," Philips Tech. Rev. 33, 178-180 (1973).
  7. J. B. Lasky, "Wafer bonding for silicon-on-insulator technologies," Appl. Phys. Lett. 48, 78-80 (1986).
    [CrossRef]
  8. M. Shimbo, K. Furukawa, and K. Tanzawa, "Silicon-to-silicon direct bonding method," J. Appl. Phys. 60, 2987-2989 (1986).
    [CrossRef]
  9. J. Haisma, Th. M. Michielsen, and J. A. Pals, "Method of manufacturing semiconductor devices," U.S. patent 4,983,251 (8 January 1991).
  10. U. Gösele, T. Abe, J. Haisma, and M. A. Schmidt, "Bond strength measurements related to silicon surface hydrophilicity," in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (The Electrochemical Society Inc., 1992), Vol. 92-7.
  11. A. Plöszl and G. Kräuter, "Wafer direct bonding: tailoring adhesion between brittle materials," Mater. Sci. Eng. R. R25, 1-88 (1999).
  12. M. H. Vincken, ed., "Special issue on direct bonding," Philips J. Res. 49, 1-182 (1995).
    [CrossRef]
  13. Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding, Science and Technology, The Electrochemical Society (Wiley, 1999).
  14. J. Haisma and G. A. C. M. Spierings, "Contact bonding, including direct bonding in a historical and recent context of materials science and technology, physics and chemistry. Historical review in a broader scope and comparative outlook," Mater. Sci. Eng. R. R37, 1-60 (2002).
    [CrossRef]
  15. M. Alexe and U. Gösele, Wafer Bonding: Applications and Technology, Materials Science Series (Springer-Verlag, 2004).
  16. J. Haisma and G. A. C. M. Spierings, "Surface-related phenomena in the direct bonding of silicon and fused silica wafer pairs," Philips J. Res. 49, 47-63 (1995).
    [CrossRef]
  17. S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, and T. Yamamoto, "Feasibility of immersion lithography," Proc. SPIE 5377, 264-272 (2004).
    [CrossRef]
  18. B. Streefkerk, J. J. M. Baselmans, P. Graubner, J. Haisma, N. Hattu, Ch. A. Hoogendam, E. R. Loopstra, J. C. H. Mulkens, and B. Gellrich, "Lithographic apparatus and device manufacturing method," U.S. patent publication no. 2005/0110973 (26 May 2005).
  19. J. Haisma, F. J. H. M. Van der Kruis, G. A. C. M. Spierings, J. J. Baalbergen, B. H. Bijsterveld, R. Brehm, J. H. P. M. Faasen, J. J. C. Groenen, P. W. De Haas, T. B. J. Haddeman, T. M. Michielsen, and J. Vijfvinkel, "Improved geometry of double-sided polished parallel wafers prepared for direct bonding," Appl. Opt. 33, 7945-7954 (1994).
    [CrossRef] [PubMed]
  20. T. Nakamura, "Method of making a semiconductor device," U.S. patent 3,239,908 (15 March 1966).
  21. I. R. Cramer and C. F. Burrows, "Diffusion bonding," U.S. patent 3,256,598 (21 June 1966).
  22. R. P. Johnson, P. Del Rey, R. G. Shulman, and D. M. Van Winkle, "Monatomic semiconductor devices," U.S. patent 2,743,201 (24 April 1956).
  23. A. R. Krikpatrick, "Electrostatic bonding using externally applied pressure," U.S. patent 4,285,714 (25 August 1981).
  24. U. Gösele, "Method of manufacturing microstructures and also microstructure," U.S. patent 5,985,412 (16 November 1999).
  25. Ch. Batz-Sohn, G. Kräuter, and U. Gösele, "Process for joining two solid bodies and the resultant structural element," U.S. patent 6,190,778 (20 February 2001).
  26. D.-H. Gwo, "Ultra-precision bonding for cryogenic fused-silica optics," Proc. SPIE 3435, 136-142 (1998).
    [CrossRef]
  27. D.-H. Gwo, "Ultra-precision and reliable bonding method," U.S. patent 6,284,085 (4 September 2001).
  28. Y. Bäcklund, K. Hermansson, and L. Smith, "Bond strength measurements related to silicon surface hydrophilicity," in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (The Electrochemical Society Inc., 1992), Vol. 92-7, p. 82.
    [PubMed]
  29. K. Ljungberg, A. Soderbarg, S. Bengtsson, and A. Jauhiainen, "Characterization of spontaneously bonded hydrophobic silicon surfaces," J. Electrochem. Soc. 141, 562-566 (1994).
    [CrossRef]
  30. J. N. Isrealachvili, P. MacGuiggan, and R. Horn, "Basic physics of interactions between surfaces in dry, humid and aqueous environments," in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (The Electrochemical Society Inc., 1992), Vol. 92-7, pp. 33-47.
  31. K. Ljungberg, A. Soderbarg, and U. Jansson, "Improved direct bonding of Si and SiO2 surfaces by cleaning in H2SO4:H2O2: HF," Appl. Phys. Lett. 67, 650-652 (1995).
    [CrossRef]
  32. Q.-Y. Tong and U. Gösele, "Basics of interactions between flat surfaces," in Semiconductor Wafer Bonding, Science and Technology, The Electrochemical Society (Wiley, 1999), pp. 17-31.
  33. J. Bagdahn and M. Petzold, "Debonding of wafer-bonded interfaces for handling and transfer applications," in Wafer Bonding: Applications and Technology, Materials Science Series (Springer, 2004), pp. 473-494.
  34. E. Igata, M. Arundell, H. Morgan, and J. M. Cooper, "Interconnected reversible lab-on-a-chip technology," Lab. Chip 2, 65-69 (2002).
    [CrossRef]
  35. P. Müller and A. Paúl, "Elastic effects on surface physics," Surf. Sci. Rep. 54, 157-258 (2004).
    [CrossRef]
  36. M. Bruel, B. Aspar, and A.-J. Auberton-Hervé, "Smart-cut: a new silicon-on-insulator material technology based on hydrogen implantation and wafer bonding," Jpn. J. Appl. Phys. , Part 1 36, 1636-1641 (1997).
    [CrossRef]
  37. Q.-Y. Tong, R. Scholz, U. Gösele, T.-H. Lee, L.-J. Huong, Y.-L. Chao, T. Y. Tan, "A 'Smarter-cut' approach to low temperature silicon layer transfer," Appl. Phys. Lett. 72, 49-51 (1998).
    [CrossRef]
  38. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Appl. Phys. Lett. 67, 3114-3116 (1995).
    [CrossRef]
  39. J. Haisma, M. Verheijen, K. Van den Heuvel, and J. Van den Berg, "Mold-assisted nanolithography: a process for reliable pattern replication," J. Vac. Sci. Technol. B14, 4124-4128 (1996).
  40. J. Haisma, "Pillar-assisted stress-free silicon-on-insulator," Appl. Phys. Lett. 83, 3323-3325 (2003).
    [CrossRef]
  41. K. W. Guarini and H.-S. P. Wong, "Wafer bonding for high performance logic applications," in Wafer Bonding: Applications and Technology, Materials Science Series (Springer, 2004), Chap. 5, pp. 157-191.
  42. J. Haisma, "Nanoimprint lithography combined with direct bonding: a possibility to construct quantum dots, wires and planes in vertical cascade," Appl. Phys. Lett. 89, 244105 (2006).
    [CrossRef]
  43. H. I. Liu, D. K. Biegelsen, N. M. Johnson, F. A. Ponce, and R. F. W. Pease, "Self-limiting oxidation of Si nanowires," J. Vac. Sci. Technol. B11, 2532-2537 (1993).
  44. Ch. T. Black, "Nonvolatile memory device using semiconductor nanocrystals and method of forming same," U.S. patent publication number 0256662 (23 December 2004).
  45. M. A. Schmidt, "Wafer-to-wafer bonding for microstructure formation," Proc. IEEE 86, 1575-1585 (1998).
    [CrossRef]
  46. G. Wallis, "Application of field assisted bonding to the mass production of silicon type pressure transducers," U.S. patent 4,121,334 (February 18, 1978).
  47. J. Hess, H. Bo, R. Weber, I. Ortega, C. Barraud, N. F. De Rooij, and H. Bas, "Inhaler with ultrasonic wave nebulizer having nozzle openings superposed on peaks of a standing wafe pattern," European patent EP1,005,916A1 (1 December 1998).
  48. B. H. Weigl and K. Hedine, "Lab-on-a-chip-based separation and detection technology for life sciences," Am. Biotechnol. Lab. 20, 28-30 (2002).
  49. A. R. Kopf-Sill, A. W. Chow, L. Bousse, and C. B. Cohen, "Creating a lab-on-a-chip with microfluidic technologies," Integrated Microfabricated Biodevices, M. J. Heller and A. Guttman, eds. (Dekker, 2002), pp. 35-54.
  50. D. Figeys, "Adapting arrays and lab-on-a-chip technology for proteomics, a review," Proteomics 2, 373-382 (2002).
    [CrossRef] [PubMed]
  51. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Delivery Rev. 55, 349-377 (2003).
    [CrossRef]
  52. P. S. Lay and E. P. H. Yap, "Biomems/'Lab-on-a-chip': towards a cheaper, more rapid, portable and automated high-throughput genotyping," in Frontiers in Human Genetics, Diseases and Technologies (World Scientific, 2001), pp. 53-72.

2006 (1)

J. Haisma, "Nanoimprint lithography combined with direct bonding: a possibility to construct quantum dots, wires and planes in vertical cascade," Appl. Phys. Lett. 89, 244105 (2006).
[CrossRef]

2004 (2)

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, and T. Yamamoto, "Feasibility of immersion lithography," Proc. SPIE 5377, 264-272 (2004).
[CrossRef]

P. Müller and A. Paúl, "Elastic effects on surface physics," Surf. Sci. Rep. 54, 157-258 (2004).
[CrossRef]

2003 (2)

J. Haisma, "Pillar-assisted stress-free silicon-on-insulator," Appl. Phys. Lett. 83, 3323-3325 (2003).
[CrossRef]

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Delivery Rev. 55, 349-377 (2003).
[CrossRef]

2002 (4)

B. H. Weigl and K. Hedine, "Lab-on-a-chip-based separation and detection technology for life sciences," Am. Biotechnol. Lab. 20, 28-30 (2002).

D. Figeys, "Adapting arrays and lab-on-a-chip technology for proteomics, a review," Proteomics 2, 373-382 (2002).
[CrossRef] [PubMed]

E. Igata, M. Arundell, H. Morgan, and J. M. Cooper, "Interconnected reversible lab-on-a-chip technology," Lab. Chip 2, 65-69 (2002).
[CrossRef]

J. Haisma and G. A. C. M. Spierings, "Contact bonding, including direct bonding in a historical and recent context of materials science and technology, physics and chemistry. Historical review in a broader scope and comparative outlook," Mater. Sci. Eng. R. R37, 1-60 (2002).
[CrossRef]

1999 (1)

A. Plöszl and G. Kräuter, "Wafer direct bonding: tailoring adhesion between brittle materials," Mater. Sci. Eng. R. R25, 1-88 (1999).

1998 (3)

D.-H. Gwo, "Ultra-precision bonding for cryogenic fused-silica optics," Proc. SPIE 3435, 136-142 (1998).
[CrossRef]

Q.-Y. Tong, R. Scholz, U. Gösele, T.-H. Lee, L.-J. Huong, Y.-L. Chao, T. Y. Tan, "A 'Smarter-cut' approach to low temperature silicon layer transfer," Appl. Phys. Lett. 72, 49-51 (1998).
[CrossRef]

M. A. Schmidt, "Wafer-to-wafer bonding for microstructure formation," Proc. IEEE 86, 1575-1585 (1998).
[CrossRef]

1997 (1)

M. Bruel, B. Aspar, and A.-J. Auberton-Hervé, "Smart-cut: a new silicon-on-insulator material technology based on hydrogen implantation and wafer bonding," Jpn. J. Appl. Phys. , Part 1 36, 1636-1641 (1997).
[CrossRef]

1996 (1)

J. Haisma, M. Verheijen, K. Van den Heuvel, and J. Van den Berg, "Mold-assisted nanolithography: a process for reliable pattern replication," J. Vac. Sci. Technol. B14, 4124-4128 (1996).

1995 (4)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Appl. Phys. Lett. 67, 3114-3116 (1995).
[CrossRef]

K. Ljungberg, A. Soderbarg, and U. Jansson, "Improved direct bonding of Si and SiO2 surfaces by cleaning in H2SO4:H2O2: HF," Appl. Phys. Lett. 67, 650-652 (1995).
[CrossRef]

M. H. Vincken, ed., "Special issue on direct bonding," Philips J. Res. 49, 1-182 (1995).
[CrossRef]

J. Haisma and G. A. C. M. Spierings, "Surface-related phenomena in the direct bonding of silicon and fused silica wafer pairs," Philips J. Res. 49, 47-63 (1995).
[CrossRef]

1994 (2)

1993 (1)

H. I. Liu, D. K. Biegelsen, N. M. Johnson, F. A. Ponce, and R. F. W. Pease, "Self-limiting oxidation of Si nanowires," J. Vac. Sci. Technol. B11, 2532-2537 (1993).

1991 (1)

J. Haisma, Th. M. Michielsen, and J. A. Pals, "Method of manufacturing semiconductor devices," U.S. patent 4,983,251 (8 January 1991).

1986 (2)

J. B. Lasky, "Wafer bonding for silicon-on-insulator technologies," Appl. Phys. Lett. 48, 78-80 (1986).
[CrossRef]

M. Shimbo, K. Furukawa, and K. Tanzawa, "Silicon-to-silicon direct bonding method," J. Appl. Phys. 60, 2987-2989 (1986).
[CrossRef]

1973 (1)

K. Compaan and P. Kramer, "The Philips 'VLP' system," Philips Tech. Rev. 33, 178-180 (1973).

1936 (1)

Lord Rayleigh, "A study of glass surfaces in optical contact," Proc. R. Soc. London, Ser. A 156, 326-349 (1936).
[CrossRef]

Adv. Drug Delivery Rev. (1)

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Adv. Drug Delivery Rev. 55, 349-377 (2003).
[CrossRef]

Am. Biotechnol. Lab. (1)

B. H. Weigl and K. Hedine, "Lab-on-a-chip-based separation and detection technology for life sciences," Am. Biotechnol. Lab. 20, 28-30 (2002).

Appl. Opt. (1)

Appl. Phys. Lett. (6)

K. Ljungberg, A. Soderbarg, and U. Jansson, "Improved direct bonding of Si and SiO2 surfaces by cleaning in H2SO4:H2O2: HF," Appl. Phys. Lett. 67, 650-652 (1995).
[CrossRef]

Q.-Y. Tong, R. Scholz, U. Gösele, T.-H. Lee, L.-J. Huong, Y.-L. Chao, T. Y. Tan, "A 'Smarter-cut' approach to low temperature silicon layer transfer," Appl. Phys. Lett. 72, 49-51 (1998).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Appl. Phys. Lett. 67, 3114-3116 (1995).
[CrossRef]

J. Haisma, "Pillar-assisted stress-free silicon-on-insulator," Appl. Phys. Lett. 83, 3323-3325 (2003).
[CrossRef]

J. B. Lasky, "Wafer bonding for silicon-on-insulator technologies," Appl. Phys. Lett. 48, 78-80 (1986).
[CrossRef]

J. Haisma, "Nanoimprint lithography combined with direct bonding: a possibility to construct quantum dots, wires and planes in vertical cascade," Appl. Phys. Lett. 89, 244105 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. Shimbo, K. Furukawa, and K. Tanzawa, "Silicon-to-silicon direct bonding method," J. Appl. Phys. 60, 2987-2989 (1986).
[CrossRef]

J. Electrochem. Soc. (1)

K. Ljungberg, A. Soderbarg, S. Bengtsson, and A. Jauhiainen, "Characterization of spontaneously bonded hydrophobic silicon surfaces," J. Electrochem. Soc. 141, 562-566 (1994).
[CrossRef]

J. Vac. Sci. Technol. (2)

J. Haisma, M. Verheijen, K. Van den Heuvel, and J. Van den Berg, "Mold-assisted nanolithography: a process for reliable pattern replication," J. Vac. Sci. Technol. B14, 4124-4128 (1996).

H. I. Liu, D. K. Biegelsen, N. M. Johnson, F. A. Ponce, and R. F. W. Pease, "Self-limiting oxidation of Si nanowires," J. Vac. Sci. Technol. B11, 2532-2537 (1993).

Jpn. J. Appl. Phys. (1)

M. Bruel, B. Aspar, and A.-J. Auberton-Hervé, "Smart-cut: a new silicon-on-insulator material technology based on hydrogen implantation and wafer bonding," Jpn. J. Appl. Phys. , Part 1 36, 1636-1641 (1997).
[CrossRef]

Lab. Chip (1)

E. Igata, M. Arundell, H. Morgan, and J. M. Cooper, "Interconnected reversible lab-on-a-chip technology," Lab. Chip 2, 65-69 (2002).
[CrossRef]

Mater. Sci. Eng. (1)

A. Plöszl and G. Kräuter, "Wafer direct bonding: tailoring adhesion between brittle materials," Mater. Sci. Eng. R. R25, 1-88 (1999).

Mater. Sci. Eng. R. (1)

J. Haisma and G. A. C. M. Spierings, "Contact bonding, including direct bonding in a historical and recent context of materials science and technology, physics and chemistry. Historical review in a broader scope and comparative outlook," Mater. Sci. Eng. R. R37, 1-60 (2002).
[CrossRef]

Philips J. Res. (2)

J. Haisma and G. A. C. M. Spierings, "Surface-related phenomena in the direct bonding of silicon and fused silica wafer pairs," Philips J. Res. 49, 47-63 (1995).
[CrossRef]

M. H. Vincken, ed., "Special issue on direct bonding," Philips J. Res. 49, 1-182 (1995).
[CrossRef]

Philips Tech. Rev. (1)

K. Compaan and P. Kramer, "The Philips 'VLP' system," Philips Tech. Rev. 33, 178-180 (1973).

Proc. IEEE (1)

M. A. Schmidt, "Wafer-to-wafer bonding for microstructure formation," Proc. IEEE 86, 1575-1585 (1998).
[CrossRef]

Proc. R. Soc. London (1)

Lord Rayleigh, "A study of glass surfaces in optical contact," Proc. R. Soc. London, Ser. A 156, 326-349 (1936).
[CrossRef]

Proc. SPIE (2)

S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, and T. Yamamoto, "Feasibility of immersion lithography," Proc. SPIE 5377, 264-272 (2004).
[CrossRef]

D.-H. Gwo, "Ultra-precision bonding for cryogenic fused-silica optics," Proc. SPIE 3435, 136-142 (1998).
[CrossRef]

Proteomics (1)

D. Figeys, "Adapting arrays and lab-on-a-chip technology for proteomics, a review," Proteomics 2, 373-382 (2002).
[CrossRef] [PubMed]

Surf. Sci. Rep. (1)

P. Müller and A. Paúl, "Elastic effects on surface physics," Surf. Sci. Rep. 54, 157-258 (2004).
[CrossRef]

Other (26)

Q.-Y. Tong and U. Gösele, "Basics of interactions between flat surfaces," in Semiconductor Wafer Bonding, Science and Technology, The Electrochemical Society (Wiley, 1999), pp. 17-31.

J. Bagdahn and M. Petzold, "Debonding of wafer-bonded interfaces for handling and transfer applications," in Wafer Bonding: Applications and Technology, Materials Science Series (Springer, 2004), pp. 473-494.

K. W. Guarini and H.-S. P. Wong, "Wafer bonding for high performance logic applications," in Wafer Bonding: Applications and Technology, Materials Science Series (Springer, 2004), Chap. 5, pp. 157-191.

D.-H. Gwo, "Ultra-precision and reliable bonding method," U.S. patent 6,284,085 (4 September 2001).

Y. Bäcklund, K. Hermansson, and L. Smith, "Bond strength measurements related to silicon surface hydrophilicity," in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (The Electrochemical Society Inc., 1992), Vol. 92-7, p. 82.
[PubMed]

J. N. Isrealachvili, P. MacGuiggan, and R. Horn, "Basic physics of interactions between surfaces in dry, humid and aqueous environments," in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (The Electrochemical Society Inc., 1992), Vol. 92-7, pp. 33-47.

T. Nakamura, "Method of making a semiconductor device," U.S. patent 3,239,908 (15 March 1966).

I. R. Cramer and C. F. Burrows, "Diffusion bonding," U.S. patent 3,256,598 (21 June 1966).

R. P. Johnson, P. Del Rey, R. G. Shulman, and D. M. Van Winkle, "Monatomic semiconductor devices," U.S. patent 2,743,201 (24 April 1956).

A. R. Krikpatrick, "Electrostatic bonding using externally applied pressure," U.S. patent 4,285,714 (25 August 1981).

U. Gösele, "Method of manufacturing microstructures and also microstructure," U.S. patent 5,985,412 (16 November 1999).

Ch. Batz-Sohn, G. Kräuter, and U. Gösele, "Process for joining two solid bodies and the resultant structural element," U.S. patent 6,190,778 (20 February 2001).

B. Streefkerk, J. J. M. Baselmans, P. Graubner, J. Haisma, N. Hattu, Ch. A. Hoogendam, E. R. Loopstra, J. C. H. Mulkens, and B. Gellrich, "Lithographic apparatus and device manufacturing method," U.S. patent publication no. 2005/0110973 (26 May 2005).

M. Alexe and U. Gösele, Wafer Bonding: Applications and Technology, Materials Science Series (Springer-Verlag, 2004).

W. Innys, Newton's Opticks: A Treatise of the Reflections, Refractions and Colours, MDCCLXXX, 4th ed. (McGraw-Hill, 1931), p. 199.

Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding, Science and Technology, The Electrochemical Society (Wiley, 1999).

J. D. Van der Waals, "Over de continuiteit van den gas-en vloeistoftoestand," Ph.D. dissertation (Sijthof, 1873) (in Dutch).

F. Twijman and J. H. Dowell, "Improvements in or relating to length measurements by interferometer," U.K. patent 367,859 (26 February 1932).

J. Haisma and S. J. Van Hoppe, "Laser comprising a block of insulating material containing a channel filled with gas," U.S. patent 3,387,226 (4 June 1968).

J. Haisma, Th. M. Michielsen, and J. A. Pals, "Method of manufacturing semiconductor devices," U.S. patent 4,983,251 (8 January 1991).

U. Gösele, T. Abe, J. Haisma, and M. A. Schmidt, "Bond strength measurements related to silicon surface hydrophilicity," in Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (The Electrochemical Society Inc., 1992), Vol. 92-7.

A. R. Kopf-Sill, A. W. Chow, L. Bousse, and C. B. Cohen, "Creating a lab-on-a-chip with microfluidic technologies," Integrated Microfabricated Biodevices, M. J. Heller and A. Guttman, eds. (Dekker, 2002), pp. 35-54.

G. Wallis, "Application of field assisted bonding to the mass production of silicon type pressure transducers," U.S. patent 4,121,334 (February 18, 1978).

J. Hess, H. Bo, R. Weber, I. Ortega, C. Barraud, N. F. De Rooij, and H. Bas, "Inhaler with ultrasonic wave nebulizer having nozzle openings superposed on peaks of a standing wafe pattern," European patent EP1,005,916A1 (1 December 1998).

Ch. T. Black, "Nonvolatile memory device using semiconductor nanocrystals and method of forming same," U.S. patent publication number 0256662 (23 December 2004).

P. S. Lay and E. P. H. Yap, "Biomems/'Lab-on-a-chip': towards a cheaper, more rapid, portable and automated high-throughput genotyping," in Frontiers in Human Genetics, Diseases and Technologies (World Scientific, 2001), pp. 53-72.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Measured bond energy as a function of time following direct bonding: a settling process caused by an increasing number of covalent bonds.

Fig. 2
Fig. 2

Two examples of dedicated direct bonding: (a) fused-silica wafer bonded to platinum; 1 = the direct bonded part; (b) Teflon layer deposited on a silicon wafer, directly bonded to a fused-silica wafer; 1 = bonded parts; 2 = fused-silica wafer.

Fig. 3
Fig. 3

Organic interface engineering: NH―CH2―CHOH bond, formed by a condensation reaction of amino end and epoxy end groups of silane compounds.

Fig. 4
Fig. 4

Organic interface engineering: bilayer bonding of two surfaces, both of which have an organic monolayer on top. The aim is to achieve the transition of a van der Waals bond to a covalent bond at a temperature as low as 170   ° C . For further details, see [25].

Fig. 5
Fig. 5

Elasticity and bonding: direct bonding experiment involving thin wafers and rigid blocks: (a) two thin wafers; (b) a rigid block and a thin wafer; (c) two rigid blocks; material applied: silicon. For a bonding result, see Fig. 6.

Fig. 6
Fig. 6

Elasticity and bonding; bond-front velocity measured in the following compositions: without a rigid wafer (i.e., with two thin wafers), with one thin wafer and one rigid block and two rigid blocks for silicon directly bonded to silicon, oxidized silicon directly bonded to oxidized silicon, and fused silica directly bonded to fused silica.

Fig. 7
Fig. 7

Elasticity and bonding: a combination of direct bonding and nanoimprint lithographic structuring to realize a stress-free silicon-on-insulator layer, referred to as lattice SOI.

Fig. 8
Fig. 8

First step in multiple bonding: engineering of a quantum dot. For further details, see text.

Fig. 9
Fig. 9

Second step in multiple bonding: engineering of a cascade comprising a quantum dot and a quantum wire. For further details, see text.

Fig. 10
Fig. 10

Third step in multiple bonding: engineering of a cascade comprising a quantum dot, a quantum wire, and a quantum plane. For further details, see text.

Fig. 11
Fig. 11

Pressure sensor of the sandwich type (1977) from [45].

Fig. 12
Fig. 12

Inhaler with ultrasonic wave nebulizer (1998) from [46].

Fig. 13
Fig. 13

Bonding and plasticity: example of an incoupling element that has been fused onto the direct bonded glass wafer (lab-on-a-chip type). The central incoupling element has a hole fiber connected to it by a plastic upchurch. To clearly visualize the coupling situation, the front side of the fused incoupling–outcoupling glass elements has been mechanically removed. For further details, see text. Material: borosilicate glass; dimensions basic element 90 × 20 × 5   mm ; incoupling–outcoupling elements, height 15   mm .

Fig. 14
Fig. 14

Bonding and plasticity: four examples of a 3D overall configuration of lab-on-a-chip type wafers. Material: borosilicate glass; dimensions: height of (a), (b), and (c) is 100   mm , and of (d) is 90   mm ; diameter is 35   mm .

Tables (1)

Tables Icon

Table 1 Bond-Front Velocities of Wafer-to-Wafer, Wafer-to-Block, and Block-to-Block Combinations of Silicon, Oxidized Silicon, and Fused Silica a

Metrics