Abstract

Phase-shifting real-time holography with photorefractive Bi12SiO20 crystal as holographic recording medium applied to load transmission evaluation and tension dissipation on a dried human skull under loading is presented. The applied loading stands as a simulation of isolated contraction (SIC) of some masticatories muscles. The four-frames phase-shifting technique and the unwrapping branch-cut technique were used to obtain the phase map. The quantitative results show the feasibility of the employed system in the study of microdisplacements in the skull structure provided by SIC.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sicher and J. Tandler, Dentistry Anatomy (Labor, Barcelona, 1930).
  2. I. Testud and O. Jacob, Anatomia Topografica con Aplicaciones Medicoquirurgicas (Salvat Editores, Barcelona, 1956).
  3. A. D. Dixon, D. A. N. Hoyte, and O. Ronning, Fundamentals of Craniofacial Growth (CRC Press, Boca Raton, 1997).
  4. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  5. J. Woisetschlager, D. B. Sheffer, C. W. Loughry, K. Somasundaram, S. K. Chawla, and P. J. Wesolowski, "Phase-shifting holographic interferometry for breast cancer detection," Appl. Opt. 33, 5011-5015 (1994).
    [CrossRef] [PubMed]
  6. A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
    [PubMed]
  7. B. Ovryn, "Holographic interferometry," Crit. Rev. Biomed. Eng. 16, 269-322 (1989).
    [PubMed]
  8. R. J. Pryputniewicz, "Holographic determination of rigid-body motions, and application of the method to orthodontics," Appl. Opt. 18, 1442-1446 (1979).
    [CrossRef] [PubMed]
  9. R. F. Spetzles and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg. 52, 825-828 (1980).
    [CrossRef]
  10. A. Zentner, H. G. Sergi, and G. Filippidis, "A holographic study of variations in bone deformations resulting from different headgear forces in a maceretad human skull," Angle Orthod. 66, 463-472 (1996).
    [PubMed]
  11. D. Pavlin and D. Vukicevic, "Mechanical reactions of facial skeleton to maxillary expansion determined by laser holography," Am. J. Orthod. 85, 498-502 (1984).
    [CrossRef] [PubMed]
  12. K. G. Lee, Y. K. Park, and D. J. Rudolph, "A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction," Am. J. Orthod. Dentofacial Orthop. 111, 623-632 (1997).
    [CrossRef] [PubMed]
  13. S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
    [CrossRef] [PubMed]
  14. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  15. P. Gunter and J. P. Huinard, "Photorefractive effects and materials I," in Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer, Berlin, 1988).
  16. E. A. Barbosa and M. Muramatsu, "Mapping of vibration amplitudes by time average holography in Bi12SiO220 crystals," Opt. Laser Technol. 29, 359-364 (1997).
    [CrossRef]
  17. K. Creath, "Phase-measurements interferometry techniques," in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1998), pp. 350-393.
  18. M. P. Georges and Ph. C. Lemaire, "Phase-shifting real-time holographic interferometry that uses bismuth silicon oxide crystals," Appl. Opt. 34, 7497-7506 (1995).
    [CrossRef] [PubMed]
  19. M. P. Georges and Ph. C. Lemaire, "Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-256 (1997).
    [CrossRef]
  20. M. P. Georges and Ph. C. Lemaire, "Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects," Appl. Phys. B 68, 1073-1083 (1999).
    [CrossRef]
  21. M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, "Compact holographic camera based on photorefractive crystals and applications in interferometry," Opt. Mater. 18, 49-54 (2001).
    [CrossRef]
  22. M. Weber, F. Rickermann, and G. von Bally, "Realization of a double-exposure interferometer with photorefractive crystals for biomedical applications," in Optics within Live Science (OWLS V), C. Fotakis, T. G. Papazoglou, and C. Kapouzos, eds. (Elsevier, Berlin, 1999), pp. 312-315.
  23. D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997).
    [CrossRef]
  24. D. Dirksen and G. von Bally, "Holographic double exposure interferometry in near realtime with photorefractive crystals," J. Opt. Soc. Am. B 11, 1858-1863 (1994).
    [CrossRef]
  25. E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, "Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers," J. Opt. Soc. Am. A 22, 2872-2879 (2005).
    [CrossRef]
  26. M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique," Opt. Laser Eng . 44, 56-67 (2006).
    [CrossRef]
  27. M. R. R. Gesualdi, E. A. Barbosa, and M. Muramatsu, "Advances in phase-stepping real-time holography using photorefractive sillenite crystals," J. Optoelectron. Adv. Mater. 8, 1574-1583 (2006).
  28. M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Surface contouring by phase-shifting real-time holography using photorefractive sillenite crystals," Opt. Laser Technol. 39, 98-104 (2007).
    [CrossRef]
  29. J. Burke and H. Helmers, "Matched data storage in ESPI by combination of spatial phase shifting with temporal phase unwrapping," Opt. Laser Technol. 32, 235-240 (2000).
    [CrossRef]
  30. B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003).
    [CrossRef]
  31. U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  32. S. Schedin, G. Pedrini, and H. J. Tiziani, "Pulsed digital holography for deformation measurements on biological tissues," Appl. Opt. 39, 2853-2857 (2000).
    [CrossRef]
  33. A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
    [CrossRef]
  34. T. R. Judge and P. J. Bryanston-Cross, "A review of phase unwrapping techniques in fringe analysis," Opt. Lasers Eng. 24, 199-239 (1994).
    [CrossRef]
  35. J. Strand and T. Taxt, "Performance evaluation of two-dimensional phase unwrapping algorithms," Appl. Opt. 38, 4333-4344 (1999).
    [CrossRef]
  36. B. Gutmann and H. Weber, "Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing," Appl. Opt. 38, 5577-5593 (1999).
    [CrossRef]

2007 (1)

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Surface contouring by phase-shifting real-time holography using photorefractive sillenite crystals," Opt. Laser Technol. 39, 98-104 (2007).
[CrossRef]

2006 (2)

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique," Opt. Laser Eng . 44, 56-67 (2006).
[CrossRef]

M. R. R. Gesualdi, E. A. Barbosa, and M. Muramatsu, "Advances in phase-stepping real-time holography using photorefractive sillenite crystals," J. Optoelectron. Adv. Mater. 8, 1574-1583 (2006).

2005 (1)

2003 (1)

B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003).
[CrossRef]

2002 (1)

U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

2001 (1)

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, "Compact holographic camera based on photorefractive crystals and applications in interferometry," Opt. Mater. 18, 49-54 (2001).
[CrossRef]

2000 (3)

S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
[CrossRef] [PubMed]

J. Burke and H. Helmers, "Matched data storage in ESPI by combination of spatial phase shifting with temporal phase unwrapping," Opt. Laser Technol. 32, 235-240 (2000).
[CrossRef]

S. Schedin, G. Pedrini, and H. J. Tiziani, "Pulsed digital holography for deformation measurements on biological tissues," Appl. Opt. 39, 2853-2857 (2000).
[CrossRef]

1999 (3)

J. Strand and T. Taxt, "Performance evaluation of two-dimensional phase unwrapping algorithms," Appl. Opt. 38, 4333-4344 (1999).
[CrossRef]

B. Gutmann and H. Weber, "Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing," Appl. Opt. 38, 5577-5593 (1999).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects," Appl. Phys. B 68, 1073-1083 (1999).
[CrossRef]

1998 (1)

K. Creath, "Phase-measurements interferometry techniques," in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1998), pp. 350-393.

1997 (5)

K. G. Lee, Y. K. Park, and D. J. Rudolph, "A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction," Am. J. Orthod. Dentofacial Orthop. 111, 623-632 (1997).
[CrossRef] [PubMed]

M. P. Georges and Ph. C. Lemaire, "Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-256 (1997).
[CrossRef]

D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997).
[CrossRef]

E. A. Barbosa and M. Muramatsu, "Mapping of vibration amplitudes by time average holography in Bi12SiO220 crystals," Opt. Laser Technol. 29, 359-364 (1997).
[CrossRef]

A. D. Dixon, D. A. N. Hoyte, and O. Ronning, Fundamentals of Craniofacial Growth (CRC Press, Boca Raton, 1997).

1996 (1)

A. Zentner, H. G. Sergi, and G. Filippidis, "A holographic study of variations in bone deformations resulting from different headgear forces in a maceretad human skull," Angle Orthod. 66, 463-472 (1996).
[PubMed]

1995 (1)

1994 (3)

1993 (2)

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

1989 (1)

B. Ovryn, "Holographic interferometry," Crit. Rev. Biomed. Eng. 16, 269-322 (1989).
[PubMed]

1988 (1)

P. Gunter and J. P. Huinard, "Photorefractive effects and materials I," in Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer, Berlin, 1988).

1985 (1)

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

1984 (1)

D. Pavlin and D. Vukicevic, "Mechanical reactions of facial skeleton to maxillary expansion determined by laser holography," Am. J. Orthod. 85, 498-502 (1984).
[CrossRef] [PubMed]

1980 (1)

R. F. Spetzles and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg. 52, 825-828 (1980).
[CrossRef]

1979 (2)

1956 (1)

I. Testud and O. Jacob, Anatomia Topografica con Aplicaciones Medicoquirurgicas (Salvat Editores, Barcelona, 1956).

1930 (1)

H. Sicher and J. Tandler, Dentistry Anatomy (Labor, Barcelona, 1930).

Barbosa, E. A.

M. R. R. Gesualdi, E. A. Barbosa, and M. Muramatsu, "Advances in phase-stepping real-time holography using photorefractive sillenite crystals," J. Optoelectron. Adv. Mater. 8, 1574-1583 (2006).

E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, "Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers," J. Opt. Soc. Am. A 22, 2872-2879 (2005).
[CrossRef]

E. A. Barbosa and M. Muramatsu, "Mapping of vibration amplitudes by time average holography in Bi12SiO220 crystals," Opt. Laser Technol. 29, 359-364 (1997).
[CrossRef]

Bottrl, J. A.

S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
[CrossRef] [PubMed]

Braun, S.

S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
[CrossRef] [PubMed]

Bryanston-Cross, P. J.

T. R. Judge and P. J. Bryanston-Cross, "A review of phase unwrapping techniques in fringe analysis," Opt. Lasers Eng. 24, 199-239 (1994).
[CrossRef]

Burke, J.

J. Burke and H. Helmers, "Matched data storage in ESPI by combination of spatial phase shifting with temporal phase unwrapping," Opt. Laser Technol. 32, 235-240 (2000).
[CrossRef]

Chawla, S. K.

Creath, K.

K. Creath, "Phase-measurements interferometry techniques," in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1998), pp. 350-393.

Curcio, B. G.

Dirksen, D.

B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003).
[CrossRef]

D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997).
[CrossRef]

D. Dirksen and G. von Bally, "Holographic double exposure interferometry in near realtime with photorefractive crystals," J. Opt. Soc. Am. B 11, 1858-1863 (1994).
[CrossRef]

Dixon, A. D.

A. D. Dixon, D. A. N. Hoyte, and O. Ronning, Fundamentals of Craniofacial Growth (CRC Press, Boca Raton, 1997).

Fahrenkamp, A.

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

Filho, A. A. V.

Filippidis, G.

A. Zentner, H. G. Sergi, and G. Filippidis, "A holographic study of variations in bone deformations resulting from different headgear forces in a maceretad human skull," Angle Orthod. 66, 463-472 (1996).
[PubMed]

Geiger, A. W.

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

Georges, M. P.

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, "Compact holographic camera based on photorefractive crystals and applications in interferometry," Opt. Mater. 18, 49-54 (2001).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects," Appl. Phys. B 68, 1073-1083 (1999).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-256 (1997).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Phase-shifting real-time holographic interferometry that uses bismuth silicon oxide crystals," Appl. Opt. 34, 7497-7506 (1995).
[CrossRef] [PubMed]

Gesualdi, M. R. R.

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Surface contouring by phase-shifting real-time holography using photorefractive sillenite crystals," Opt. Laser Technol. 39, 98-104 (2007).
[CrossRef]

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique," Opt. Laser Eng . 44, 56-67 (2006).
[CrossRef]

M. R. R. Gesualdi, E. A. Barbosa, and M. Muramatsu, "Advances in phase-stepping real-time holography using photorefractive sillenite crystals," J. Optoelectron. Adv. Mater. 8, 1574-1583 (2006).

E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, "Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers," J. Opt. Soc. Am. A 22, 2872-2879 (2005).
[CrossRef]

Gunter, P.

P. Gunter and J. P. Huinard, "Photorefractive effects and materials I," in Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer, Berlin, 1988).

Gutmann, B.

Helmers, H.

J. Burke and H. Helmers, "Matched data storage in ESPI by combination of spatial phase shifting with temporal phase unwrapping," Opt. Laser Technol. 32, 235-240 (2000).
[CrossRef]

Hertel, M.

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

Hoyte, D. A. N.

A. D. Dixon, D. A. N. Hoyte, and O. Ronning, Fundamentals of Craniofacial Growth (CRC Press, Boca Raton, 1997).

Huinard, J. P.

P. Gunter and J. P. Huinard, "Photorefractive effects and materials I," in Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer, Berlin, 1988).

Jacob, O.

I. Testud and O. Jacob, Anatomia Topografica con Aplicaciones Medicoquirurgicas (Salvat Editores, Barcelona, 1956).

Judge, T. R.

T. R. Judge and P. J. Bryanston-Cross, "A review of phase unwrapping techniques in fringe analysis," Opt. Lasers Eng. 24, 199-239 (1994).
[CrossRef]

Jüptner, W.

U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Kamshilin, A. A.

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

Kandulla, J.

B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003).
[CrossRef]

Kemper, B.

B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003).
[CrossRef]

Lee, K. G.

S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
[CrossRef] [PubMed]

K. G. Lee, Y. K. Park, and D. J. Rudolph, "A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction," Am. J. Orthod. Dentofacial Orthop. 111, 623-632 (1997).
[CrossRef] [PubMed]

Legan, H. L.

S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
[CrossRef] [PubMed]

Lemaire, Ph. C.

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, "Compact holographic camera based on photorefractive crystals and applications in interferometry," Opt. Mater. 18, 49-54 (2001).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects," Appl. Phys. B 68, 1073-1083 (1999).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-256 (1997).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Phase-shifting real-time holographic interferometry that uses bismuth silicon oxide crystals," Appl. Opt. 34, 7497-7506 (1995).
[CrossRef] [PubMed]

Loughry, C. W.

Lunazzi, J. J.

S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
[CrossRef] [PubMed]

Matthes, F.

D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997).
[CrossRef]

Muramatsu, M.

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Surface contouring by phase-shifting real-time holography using photorefractive sillenite crystals," Opt. Laser Technol. 39, 98-104 (2007).
[CrossRef]

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique," Opt. Laser Eng . 44, 56-67 (2006).
[CrossRef]

M. R. R. Gesualdi, E. A. Barbosa, and M. Muramatsu, "Advances in phase-stepping real-time holography using photorefractive sillenite crystals," J. Optoelectron. Adv. Mater. 8, 1574-1583 (2006).

E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, "Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers," J. Opt. Soc. Am. A 22, 2872-2879 (2005).
[CrossRef]

E. A. Barbosa and M. Muramatsu, "Mapping of vibration amplitudes by time average holography in Bi12SiO220 crystals," Opt. Laser Technol. 29, 359-364 (1997).
[CrossRef]

Ovryn, B.

B. Ovryn, "Holographic interferometry," Crit. Rev. Biomed. Eng. 16, 269-322 (1989).
[PubMed]

Park, Y. K.

K. G. Lee, Y. K. Park, and D. J. Rudolph, "A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction," Am. J. Orthod. Dentofacial Orthop. 111, 623-632 (1997).
[CrossRef] [PubMed]

Pavlin, D.

D. Pavlin and D. Vukicevic, "Mechanical reactions of facial skeleton to maxillary expansion determined by laser holography," Am. J. Orthod. 85, 498-502 (1984).
[CrossRef] [PubMed]

Pedrini, G.

Petrov, M. P.

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

Pryputniewicz, R. J.

Rickermann, F.

M. Weber, F. Rickermann, and G. von Bally, "Realization of a double-exposure interferometer with photorefractive crystals for biomedical applications," in Optics within Live Science (OWLS V), C. Fotakis, T. G. Papazoglou, and C. Kapouzos, eds. (Elsevier, Berlin, 1999), pp. 312-315.

Riehemann, S.

D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997).
[CrossRef]

Ronning, O.

A. D. Dixon, D. A. N. Hoyte, and O. Ronning, Fundamentals of Craniofacial Growth (CRC Press, Boca Raton, 1997).

Rudolph, D. J.

K. G. Lee, Y. K. Park, and D. J. Rudolph, "A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction," Am. J. Orthod. Dentofacial Orthop. 111, 623-632 (1997).
[CrossRef] [PubMed]

Scauflaire, V. S.

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, "Compact holographic camera based on photorefractive crystals and applications in interferometry," Opt. Mater. 18, 49-54 (2001).
[CrossRef]

Schedin, S.

Scheld, H. H.

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

Schnars, U.

U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Sergi, H. G.

A. Zentner, H. G. Sergi, and G. Filippidis, "A holographic study of variations in bone deformations resulting from different headgear forces in a maceretad human skull," Angle Orthod. 66, 463-472 (1996).
[PubMed]

Sheffer, D. B.

Sicher, H.

H. Sicher and J. Tandler, Dentistry Anatomy (Labor, Barcelona, 1930).

Soga, D.

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Surface contouring by phase-shifting real-time holography using photorefractive sillenite crystals," Opt. Laser Technol. 39, 98-104 (2007).
[CrossRef]

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique," Opt. Laser Eng . 44, 56-67 (2006).
[CrossRef]

E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, "Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers," J. Opt. Soc. Am. A 22, 2872-2879 (2005).
[CrossRef]

Somasundaram, K.

Spetzler, H.

R. F. Spetzles and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg. 52, 825-828 (1980).
[CrossRef]

Spetzles, R. F.

R. F. Spetzles and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg. 52, 825-828 (1980).
[CrossRef]

Strand, J.

Tandler, J.

H. Sicher and J. Tandler, Dentistry Anatomy (Labor, Barcelona, 1930).

Taxt, T.

Testud, I.

I. Testud and O. Jacob, Anatomia Topografica con Aplicaciones Medicoquirurgicas (Salvat Editores, Barcelona, 1956).

Tiziani, H. J.

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

von Bally, G.

B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003).
[CrossRef]

D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997).
[CrossRef]

D. Dirksen and G. von Bally, "Holographic double exposure interferometry in near realtime with photorefractive crystals," J. Opt. Soc. Am. B 11, 1858-1863 (1994).
[CrossRef]

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

M. Weber, F. Rickermann, and G. von Bally, "Realization of a double-exposure interferometer with photorefractive crystals for biomedical applications," in Optics within Live Science (OWLS V), C. Fotakis, T. G. Papazoglou, and C. Kapouzos, eds. (Elsevier, Berlin, 1999), pp. 312-315.

Vukicevic, D.

D. Pavlin and D. Vukicevic, "Mechanical reactions of facial skeleton to maxillary expansion determined by laser holography," Am. J. Orthod. 85, 498-502 (1984).
[CrossRef] [PubMed]

Weber, H.

Weber, M.

M. Weber, F. Rickermann, and G. von Bally, "Realization of a double-exposure interferometer with photorefractive crystals for biomedical applications," in Optics within Live Science (OWLS V), C. Fotakis, T. G. Papazoglou, and C. Kapouzos, eds. (Elsevier, Berlin, 1999), pp. 312-315.

Wesolowski, P. J.

Woisetschlager, J.

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Zarubin, A.

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

Zentner, A.

A. Zentner, H. G. Sergi, and G. Filippidis, "A holographic study of variations in bone deformations resulting from different headgear forces in a maceretad human skull," Angle Orthod. 66, 463-472 (1996).
[PubMed]

Am. J. Orthod. (1)

D. Pavlin and D. Vukicevic, "Mechanical reactions of facial skeleton to maxillary expansion determined by laser holography," Am. J. Orthod. 85, 498-502 (1984).
[CrossRef] [PubMed]

Am. J. Orthod. Dentofacial Orthop. (2)

K. G. Lee, Y. K. Park, and D. J. Rudolph, "A study of holographic interferometry on the initial reaction of maxillofacial complex during protraction," Am. J. Orthod. Dentofacial Orthop. 111, 623-632 (1997).
[CrossRef] [PubMed]

S. Braun, J. A. Bottrl, K. G. Lee, J. J. Lunazzi, and H. L. Legan, "The biomechanics of rapid maxillary sutural expansion," Am. J. Orthod. Dentofacial Orthop. 118, 257-261 (2000).
[CrossRef] [PubMed]

Angle Orthod. (1)

A. Zentner, H. G. Sergi, and G. Filippidis, "A holographic study of variations in bone deformations resulting from different headgear forces in a maceretad human skull," Angle Orthod. 66, 463-472 (1996).
[PubMed]

Appl. Opt. (6)

Appl. Phys. B (1)

M. P. Georges and Ph. C. Lemaire, "Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects," Appl. Phys. B 68, 1073-1083 (1999).
[CrossRef]

Crit. Rev. Biomed. Eng. (1)

B. Ovryn, "Holographic interferometry," Crit. Rev. Biomed. Eng. 16, 269-322 (1989).
[PubMed]

J. Heart Valve Dis. (1)

A. W. Geiger, A. Zarubin, A. Fahrenkamp, M. Hertel, G. von Bally, and H. H. Scheld, "Non-destructive evaluation of prosthetic heart valves by holographic interferometry," J. Heart Valve Dis. 2, 343-347 (1993).
[PubMed]

J. Neurosurg. (1)

R. F. Spetzles and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg. 52, 825-828 (1980).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

M. R. R. Gesualdi, E. A. Barbosa, and M. Muramatsu, "Advances in phase-stepping real-time holography using photorefractive sillenite crystals," J. Optoelectron. Adv. Mater. 8, 1574-1583 (2006).

Meas. Sci. Technol. (1)

U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Commun. (4)

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

M. P. Georges and Ph. C. Lemaire, "Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-256 (1997).
[CrossRef]

B. Kemper, J. Kandulla, D. Dirksen, and G. von Bally, "Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry," Opt. Commun. 217, 151-160 (2003).
[CrossRef]

D. Dirksen, F. Matthes, S. Riehemann, and G. von Bally, "Phase shifting holographic double exposure interferometry with fast photorefractive crystals," Opt. Commun. 134, 310-316 (1997).
[CrossRef]

Opt. Laser Eng (1)

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique," Opt. Laser Eng . 44, 56-67 (2006).
[CrossRef]

Opt. Laser Technol. (3)

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, "Surface contouring by phase-shifting real-time holography using photorefractive sillenite crystals," Opt. Laser Technol. 39, 98-104 (2007).
[CrossRef]

J. Burke and H. Helmers, "Matched data storage in ESPI by combination of spatial phase shifting with temporal phase unwrapping," Opt. Laser Technol. 32, 235-240 (2000).
[CrossRef]

E. A. Barbosa and M. Muramatsu, "Mapping of vibration amplitudes by time average holography in Bi12SiO220 crystals," Opt. Laser Technol. 29, 359-364 (1997).
[CrossRef]

Opt. Lasers Eng. (1)

T. R. Judge and P. J. Bryanston-Cross, "A review of phase unwrapping techniques in fringe analysis," Opt. Lasers Eng. 24, 199-239 (1994).
[CrossRef]

Opt. Mater. (1)

M. P. Georges, V. S. Scauflaire, and Ph. C. Lemaire, "Compact holographic camera based on photorefractive crystals and applications in interferometry," Opt. Mater. 18, 49-54 (2001).
[CrossRef]

Other (8)

M. Weber, F. Rickermann, and G. von Bally, "Realization of a double-exposure interferometer with photorefractive crystals for biomedical applications," in Optics within Live Science (OWLS V), C. Fotakis, T. G. Papazoglou, and C. Kapouzos, eds. (Elsevier, Berlin, 1999), pp. 312-315.

K. Creath, "Phase-measurements interferometry techniques," in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1998), pp. 350-393.

H. Sicher and J. Tandler, Dentistry Anatomy (Labor, Barcelona, 1930).

I. Testud and O. Jacob, Anatomia Topografica con Aplicaciones Medicoquirurgicas (Salvat Editores, Barcelona, 1956).

A. D. Dixon, D. A. N. Hoyte, and O. Ronning, Fundamentals of Craniofacial Growth (CRC Press, Boca Raton, 1997).

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

P. Gunter and J. P. Huinard, "Photorefractive effects and materials I," in Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Real-Time holographic set-up with photorefractive BSO crystals; the light source is an Argon Laser ( λ = 514.5   nm ) ; M1, M2, M3 and M4 are plane mirrors; BS1 and BS2, beam-splitters; SF1 and SF2, spatial filters; L1 and L2, lenses; Po1 and Po2, polarisers; VF, neutral density variable filter; PZLT, piezoelectric system; BSO, photorefractive crystal; CCD, camera; skull aparatus and computer.

Fig. 2
Fig. 2

(Color online) Dried human skull fixation and muscles contraction simulation apparatus, the basic bellies that form the muscles principals were making with iron thread fixed with resin in according the real muscles in human skull: (a) real picture; and (b) A—left lateral view, absence of the teeth 37 and 38. B—right lateral view, absence of the teeth 16 and 47: in blue, left and right deep masseter (LDM and RDM), in red, left and right superficial masseter (LSM and RSM), and in green, anterior belly of left and right temporalis (ABLT and ABRT); C—frontal view; D—inverse squeme of apparatus; and E—where his were fixed in a aluminum plate located intra- cranium through at magnum foramen and supported in the condoles occipital; the regions of mastoids and posterior occipital.

Fig. 3
Fig. 3

(Color online) PS-RTHI in plane mirror micro-rotations analysis: (a) hologram ( 160 × 160   pixels ) ; (b) sequentially phase-shifted holographic interferograms; (c) wrapped phase map; (d) color unwrapped phase map; (e) 3-D plot micro-rotation of ( 1.2 ± 0.3 ) × 10 4   rad .

Fig. 4
Fig. 4

(Color online) Quantitative analysis of the left supra orbital region by PS-RTHI during the application of muscle contraction load from SIC of the anterior belly of right temporalis muscles (ABRT), where: (a) region selected in skull ( 7 .5 × 6 .5   cm ) ; (b) wrapped phase map and color unwrapped phase map; (c) 3-D plot micro-displacement.

Fig. 5
Fig. 5

(Color online) Left supra orbital region analysis due SIC of the anterior belly of left temporalis muscles (ABLT), where: (a) region selected in skull ( 7.5 × 6.5   cm ) ; (b) wrapped phase map and color unwrapped phase map; (c) 3-D plot micro-displacement.

Fig. 6
Fig. 6

(Color online) Left supra orbital region analysis due SIC of the ABLT and ABRT muscles, where: (a) region selected in skull ( 7.5 × 6.5   cm ) ; (b) wrapped phase map and color unwrapped phase map; (c) 3-D plot micro-displacement.

Fig. 7
Fig. 7

(Color online) Quantitative analysis of the maxilla and zigomatic region by PS-RTHI during the application of muscle contraction load from SIC of the left deep masseter muscles (LDM), where: (a) region selected in skull ( 7.0 × 6.0   cm ) ; (b) wrapped phase map and color unwrapped phase map; (c) 3-D plot micro-displacement due 1.25N masticatory force; (d) wrapped phase map and color unwrapped phase map; (e) 3-D plot micro-displacement due 2.15N masticatory force.

Fig. 8
Fig. 8

(Color online) Left maxilla and zigomatic region analysis due SIC of the left superficial masseter muscles (LSM), where: (a) region selected in skull ( 7.0 × 6.0   cm ) ; (b) wrapped phase map and color unwrapped phase map; (c) 3-D plot micro-displacement due 1.15N masticatory force; (d) wrapped phase map and color unwrapped phase map; (e) 3-D plot micro-displacement due 2.00N masticatory force.

Fig. 9
Fig. 9

(Color online) Left maxilla and zigomatic region analysis due SIC of the LDM and LSM muscles, where: (a) region selected in skull ( 7.0 × 6.0   cm ) ; (b) wrapped phase map and color unwrapped phase map; (c) 3-D plot micro-displacement due 2.30N masticatory force; (d) wrapped phase map and color unwrapped phase map; (e) 3-D plot micro-displacement due 2.60N masticatory force.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = ( π Δ n λ cos θ sin ρ L ρ L ) 2 m 2 ,
I 0 ( x , y ) = I 0 , T ( x , y ) + I 0 , D ( x , y ) [ 1 e ( t / τ ) ] 2 .
I 0 , D ( x , y ) = I 0 , O ( x , y ) η + I 0 , R ( x , y ) [ 1 η ] + 2 g Y cos Φ .
I 0 n ( x , y ) = I 0 ( x , y ) cos 2 [ Φ ( x , y ) + ( n 1 ) π 2 ]
n = 1 , 2 , 3 , 4.
Φ ( x , y ) = arctan [ I 04 ( x , y ) I 02 ( x , y ) I 01 ( x , y ) I 03 ( x , y ) ] .
d ( x , y ) = Φ ( x , y ) ( cos ϑ cos ϑ ) k ( cos ϑ + cos ϑ ) ,

Metrics