Abstract

Digital holographic optical coherence imaging is a full-frame coherence-gated imaging approach that uses a CCD camera to record and reconstruct digital holograms from living tissue. Recording digital holograms at the optical Fourier plane has advantages for diffuse targets compared with Fresnel off-axis digital holography. A digital hologram captured at the Fourier plane requires only a 2D fast Fourier transform for numerical reconstruction. We have applied this technique for the depth-resolved imaging of rat osteogenic tumor multicellular spheroids and acquired cross-section images of the anterior segment and the retinal region of a mouse eye. A penetration depth of 1.4  mm for the tumor spheroids was achieved.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Stetson, "Holographic fog penetration," J. Opt. Soc. Am. 57, 1060-1061 (1967).
    [CrossRef]
  2. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
    [CrossRef] [PubMed]
  3. A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.
  4. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared," Opt. Lett. 20, 2330-2332 (1995).
    [CrossRef] [PubMed]
  5. S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
    [CrossRef]
  6. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
    [CrossRef] [PubMed]
  7. K. Jeong, L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005).
    [CrossRef] [PubMed]
  8. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154 (2000).
    [CrossRef]
  9. R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, "Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses," J. Opt. Soc. Am. B 11, 1038-1044 (1994).
    [CrossRef]
  10. M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlykov, "Computer synthesis of transparency holograms," Sov. Phys.-Tech. Phys. 17, 329-332 (1972).
  11. M. A. Kronrod, N. S. Merzlykov, and L. P. Yaroslavski, "Reconstruction of holograms with a computer," Sov. Phys.-Tech. Phys. 17, 333-334 (1972).
  12. U. Schnars and W. P. O. Jüptner, "Direct recording of holograms by a CCD-target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  13. U. Schnars and W. P. O Jüptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  14. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).
    [CrossRef]
  15. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  16. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  17. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
    [CrossRef]
  18. B. Javidi and T. Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 28-30 (2000).
    [CrossRef]
  19. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006).
    [CrossRef] [PubMed]
  20. G. Pedrini and S. Schedin, "Short coherence digital holography for 3D microscopy," Optik 112, 427-432 (2001).
    [CrossRef]
  21. L. Martínez-León, G. Pedrini, and W. Osten, "Applications of short-coherence digital holography in microscopy," Appl. Opt. 44, 3977-3984 (2005).
    [CrossRef] [PubMed]
  22. C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007).
    [CrossRef]
  23. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, "Time-domain optical coherence tomography with digital holographic microscopy," Appl. Opt. 44, 1806-1812 (2005).
    [CrossRef] [PubMed]
  24. L. Yu and M. K. Kim, "Variable tomographic scanning with wavelength scanning digital interference holography," Opt. Commun. 260, 462-468 (2006).
    [CrossRef]
  25. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006).
    [CrossRef] [PubMed]
  26. K. Jeong, L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantum-well films," Appl. Opt. 43, 3802-3811 (2004).
    [CrossRef] [PubMed]
  27. K. Y. T. Seet, P. Blazkiewicz, P. Meredith, and A. V. Zvyagin, "Optical scatter imaging using digital Fourier microscopy," J. Phys. D: Appl. Phys. 38, 3590-3598 (2005).
    [CrossRef]
  28. P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, "Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography," Appl. Opt. 44, 7722-7729 (2005).
    [CrossRef] [PubMed]
  29. E. A. Swanson, D. Haung, M. R. Hee, and J. G. Fujimoto, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992).
    [CrossRef] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  31. M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999).
    [CrossRef]
  32. L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
    [CrossRef] [PubMed]
  33. K. Groebe and W. Mueller-Klieser, "On the relation between size of necrosis and diameter of tumor spheroids," Int. J. Radiat. Oncol. Biol. Phys. 34, 395-401 (1996).
    [CrossRef] [PubMed]

2007 (1)

C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007).
[CrossRef]

2006 (3)

2005 (5)

2004 (2)

2002 (1)

U. Schnars and W. P. O Jüptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

2001 (2)

2000 (3)

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

B. Javidi and T. Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 28-30 (2000).
[CrossRef]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154 (2000).
[CrossRef]

1999 (3)

1998 (1)

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

1996 (2)

K. Groebe and W. Mueller-Klieser, "On the relation between size of necrosis and diameter of tumor spheroids," Int. J. Radiat. Oncol. Biol. Phys. 34, 395-401 (1996).
[CrossRef] [PubMed]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

1995 (1)

1994 (2)

1993 (1)

A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.

1992 (1)

1989 (1)

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
[CrossRef] [PubMed]

1980 (1)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

1972 (2)

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlykov, "Computer synthesis of transparency holograms," Sov. Phys.-Tech. Phys. 17, 329-332 (1972).

M. A. Kronrod, N. S. Merzlykov, and L. P. Yaroslavski, "Reconstruction of holograms with a computer," Sov. Phys.-Tech. Phys. 17, 333-334 (1972).

1967 (1)

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
[CrossRef] [PubMed]

Barry, N. P.

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared," Opt. Lett. 20, 2330-2332 (1995).
[CrossRef] [PubMed]

Bevilacqua, F.

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
[CrossRef] [PubMed]

Blazkiewicz, P.

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, and A. V. Zvyagin, "Optical scatter imaging using digital Fourier microscopy," J. Phys. D: Appl. Phys. 38, 3590-3598 (2005).
[CrossRef]

P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, "Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography," Appl. Opt. 44, 7722-7729 (2005).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Brubaker, R. M.

Charrière, F.

Colomb, T.

Cuche, E.

Dainty, J. C.

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared," Opt. Lett. 20, 2330-2332 (1995).
[CrossRef] [PubMed]

Depeursinge, C.

Depeursinge, C. D.

French, P.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999).
[CrossRef]

French, P. M. W.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154 (2000).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared," Opt. Lett. 20, 2330-2332 (1995).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gourlay, M.

Groebe, K.

K. Groebe and W. Mueller-Klieser, "On the relation between size of necrosis and diameter of tumor spheroids," Int. J. Radiat. Oncol. Biol. Phys. 34, 395-401 (1996).
[CrossRef] [PubMed]

Harmon, E. S.

Haung, D.

Hee, M. R.

Herminjard, S.

Hyde, S. C. W.

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared," Opt. Lett. 20, 2330-2332 (1995).
[CrossRef] [PubMed]

Ivleva, L. I.

A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.

Javidi, B.

Jeong, K.

Jones, R.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154 (2000).
[CrossRef]

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999).
[CrossRef]

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared," Opt. Lett. 20, 2330-2332 (1995).
[CrossRef] [PubMed]

Jüptner, W. P. O

U. Schnars and W. P. O Jüptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Jüptner, W. P. O.

Kato, J.

Kim, M. K.

L. Yu and M. K. Kim, "Variable tomographic scanning with wavelength scanning digital interference holography," Opt. Commun. 260, 462-468 (2006).
[CrossRef]

Knuechel, R.

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

Kreutz, M.

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

Kronrod, M. A.

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlykov, "Computer synthesis of transparency holograms," Sov. Phys.-Tech. Phys. 17, 329-332 (1972).

M. A. Kronrod, N. S. Merzlykov, and L. P. Yaroslavski, "Reconstruction of holograms with a computer," Sov. Phys.-Tech. Phys. 17, 333-334 (1972).

Kuehn, J.

Kühn, J.

Kunz-Schughart, L. A.

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

Kwolek, K. M.

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

Mamaev, A. V.

A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.

Marian, A.

Marquet, P.

Martínez-León, L.

Massatsch, P.

Melloch, M.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999).
[CrossRef]

Melloch, M. R.

Meredith, P.

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, and A. V. Zvyagin, "Optical scatter imaging using digital Fourier microscopy," J. Phys. D: Appl. Phys. 38, 3590-3598 (2005).
[CrossRef]

Merzlykov, N. S.

M. A. Kronrod, N. S. Merzlykov, and L. P. Yaroslavski, "Reconstruction of holograms with a computer," Sov. Phys.-Tech. Phys. 17, 333-334 (1972).

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlykov, "Computer synthesis of transparency holograms," Sov. Phys.-Tech. Phys. 17, 329-332 (1972).

Mizuno, J.

Montfort, F.

Mueller-Klieser, W.

K. Groebe and W. Mueller-Klieser, "On the relation between size of necrosis and diameter of tumor spheroids," Int. J. Radiat. Oncol. Biol. Phys. 34, 395-401 (1996).
[CrossRef] [PubMed]

Mustata, M.

Nolte, D.

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999).
[CrossRef]

Nolte, D. D.

Nomura, T.

Ohta, S.

Osten, W.

L. Martínez-León, G. Pedrini, and W. Osten, "Applications of short-coherence digital holography in microscopy," Appl. Opt. 44, 3977-3984 (2005).
[CrossRef] [PubMed]

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Pedrini, G.

Peng, L.

Polozkov, N. M.

A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.

Rakic, A. D.

Schedin, S.

G. Pedrini and S. Schedin, "Short coherence digital holography for 3D microscopy," Optik 112, 427-432 (2001).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O Jüptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

U. Schnars and W. P. O. Jüptner, "Direct recording of holograms by a CCD-target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
[CrossRef] [PubMed]

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Seet, K. Y. T.

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, and A. V. Zvyagin, "Optical scatter imaging using digital Fourier microscopy," J. Phys. D: Appl. Phys. 38, 3590-3598 (2005).
[CrossRef]

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
[CrossRef] [PubMed]

Shkunov, V. V.

A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
[CrossRef] [PubMed]

Stetson, K. A.

Swanson, E. A.

Tucker, J. R.

Turek, J. J.

Tziraki, M.

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154 (2000).
[CrossRef]

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999).
[CrossRef]

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Wang, Q. N.

Wang, X.

C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Wu, L.

C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007).
[CrossRef]

Yamaguchi, I.

Yaroslavski, L. P.

M. A. Kronrod, N. S. Merzlykov, and L. P. Yaroslavski, "Reconstruction of holograms with a computer," Sov. Phys.-Tech. Phys. 17, 333-334 (1972).

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlykov, "Computer synthesis of transparency holograms," Sov. Phys.-Tech. Phys. 17, 329-332 (1972).

Yu, L.

L. Yu and M. K. Kim, "Variable tomographic scanning with wavelength scanning digital interference holography," Opt. Commun. 260, 462-468 (2006).
[CrossRef]

Yu, P.

Yuan, C.

C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007).
[CrossRef]

Zhai, H.

C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007).
[CrossRef]

Zhu, X.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
[CrossRef] [PubMed]

Zvyagin, A. V.

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, and A. V. Zvyagin, "Optical scatter imaging using digital Fourier microscopy," J. Phys. D: Appl. Phys. 38, 3590-3598 (2005).
[CrossRef]

P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, "Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography," Appl. Opt. 44, 7722-7729 (2005).
[CrossRef] [PubMed]

Appl. Opt. (10)

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004).
[CrossRef] [PubMed]

K. Jeong, L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005).
[CrossRef] [PubMed]

U. Schnars and W. P. O. Jüptner, "Direct recording of holograms by a CCD-target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
[CrossRef] [PubMed]

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

L. Martínez-León, G. Pedrini, and W. Osten, "Applications of short-coherence digital holography in microscopy," Appl. Opt. 44, 3977-3984 (2005).
[CrossRef] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, "Time-domain optical coherence tomography with digital holographic microscopy," Appl. Opt. 44, 1806-1812 (2005).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006).
[CrossRef] [PubMed]

K. Jeong, L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantum-well films," Appl. Opt. 43, 3802-3811 (2004).
[CrossRef] [PubMed]

P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, "Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography," Appl. Opt. 44, 7722-7729 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989).
[CrossRef] [PubMed]

Int. J. Exp. Pathol. (1)

L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998).
[CrossRef] [PubMed]

Int. J. Radiat. Oncol. Biol. Phys. (1)

K. Groebe and W. Mueller-Klieser, "On the relation between size of necrosis and diameter of tumor spheroids," Int. J. Radiat. Oncol. Biol. Phys. 34, 395-401 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, and A. V. Zvyagin, "Optical scatter imaging using digital Fourier microscopy," J. Phys. D: Appl. Phys. 38, 3590-3598 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

U. Schnars and W. P. O Jüptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Commun. (2)

L. Yu and M. K. Kim, "Variable tomographic scanning with wavelength scanning digital interference holography," Opt. Commun. 260, 462-468 (2006).
[CrossRef]

C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007).
[CrossRef]

Opt. Eng. (1)

C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Opt. Lett. (5)

Optik (1)

G. Pedrini and S. Schedin, "Short coherence digital holography for 3D microscopy," Optik 112, 427-432 (2001).
[CrossRef]

Sov. Phys.-Tech. Phys. (2)

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlykov, "Computer synthesis of transparency holograms," Sov. Phys.-Tech. Phys. 17, 329-332 (1972).

M. A. Kronrod, N. S. Merzlykov, and L. P. Yaroslavski, "Reconstruction of holograms with a computer," Sov. Phys.-Tech. Phys. 17, 333-334 (1972).

Other (2)

A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical setup for FDDH: OP, object plane; FP, Fourier plane; IP, image plane; f, focal length of the lens; ψ O , object wave at OP; ψ O F , object wave at FP; ψ R , reference wave. The role of the reconstruction lens is replaced by numerical reconstruction of the CCD data.

Fig. 2
Fig. 2

Experimental setup for the FDDH. M's, mirrors; ND, neutral density filter; PBSs, polarizing beam splitters; BS, beam splitter; L1–L3, lenses; λ∕2, half-wave plate; λ∕4, quarter-wave plate.

Fig. 3
Fig. 3

Typical digital hologram (left) and the enlargement of the rectangular section (right). Interference between the object wave and the reference wave is shown. The fringe spacing is three times the size of a pixel. The interference pattern (visibility) is weak because highly scattering living tissue was used as a target.

Fig. 4
Fig. 4

Digital hologram and its reconstruction in one dimension. (a) Intensity as a function of position for the dashed line in Fig. 3 and (b) its reconstruction by the FFT, which shows the zero-order image (center) and holographic images (sidebands).

Fig. 5
Fig. 5

Reconstructions of (a) a zero-path-matched digital hologram and (b) a non-zero-path-matched digital hologram of diffuse paper with the letter “R” in a circle on a log reflectance scale. Zero-order suppressed holographic images are shown in (c) for the non-zero-path-matched intensity subtraction method, and in (d) for the 3-pixel-averaged intensity subtraction method.

Fig. 6
Fig. 6

(a) Intensity as a function of position after the 3-pixel-averaged intensity was subtracted from the intensity plot in Fig. 3(a). (b) Zero-order suppressed spatial spectrum as a function of spatial frequency. The solid curve is for the zero-order suppression by the 3-pixel-averaged intensity subtraction method, and the dashed curve is for the zero-order suppression by the non-zero-path-matched intensity subtraction.

Fig. 7
Fig. 7

Reconstructed image of a USAF test chart (left) and its enlargement (right), which is the average of 100 sequential digital holographic images using the 3-pixel-averaging zero-order suppression method. A vibrating 5° diffuser was used to make a uniform intensity distribution at the Fourier plane.

Fig. 8
Fig. 8

Illustration of fringe walk-off in a 2D target and the out-of-focus in a 3D target. The fringe width W F V depends on the coherence length l C and the angle θ between the reference and object waves. The fringe walk-off is suppressed for a 3D target with the cost of increased out-of-focus. TOF, time-of-flight.

Fig. 9
Fig. 9

(a) Linear plot of reflectivity as a function of depth (averaged over 100 A-scans selected from holographic en face images of a planar target with a reflectivity of 60   dB ), where the FWHM is 18.2 μ m . (b) Logarithmic plot of 20 pseudo-A-scans, which shows the measured sensitivity near 86   dB .

Fig. 10
Fig. 10

(a) En face images selected per every eight frames from FD-DHOCI images of an 800 μ m diameter healthy rat tumor spheroid. (b) Pseudo-B-scans selected per every 11 frames from the data cube of the tumor shown in (a).

Fig. 11
Fig. 11

Volumetric visualization, which is generated from the volumetric data cube of the tumor spheroid in Fig. 10.

Fig. 12
Fig. 12

(a) Collection of 400 pseudo-A-scans selected from en face holographic images of a 1.4   mm diameter rat tumor spheroid. (b) Averages of 400 pseudo-A-scans selected from holographic images of tumors with four different diameters. Dashed curve in (b) is the average of the pseudo A-scans in (a).

Fig. 13
Fig. 13

(a) Sample of mouse eye in vitro (microscope image). (b) Section extracted from the FD-DHOCI volumetric data (from one fly-though) of a mouse eye, showing the cornea-iridial angle of 20°. (c) Mosaic section of the anterior segment extracted from ten fly-throughs.

Fig. 14
Fig. 14

Section of the retina of a mouse eye from FD-DHOCI volumetric data. GCL, ganglion cell layer; RPE, retinal pigment epithelium.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ψ O F ( x , y ) = i λ f   exp ( i 4 π f λ ) F ( x λ f , y λ f ) = i λ f   exp ( i 4 π f λ ) ψ O ( x , y ) × exp ( i 2 π λ f ( x x + y y ) ) d x d y ,
ψ R = ψ R 0   exp i 2 π ( ν x 0 x + ν y 0 y ) ,
I H ( x , y ) = | ψ R | 2 + | ψ O F | 2 + ψ R * ψ O F + ψ R ψ O F * .
F T ( I H ) = F T ( | ψ R | 2 ) + F T ( | ψ O F | 2 ) + F T ( ψ R * ψ O F ) + F T ( ψ R ψ O F * ) F 1 + F 2 + F 3 + F 4 .
F 3 ( ν x , ν y ) = i λ f ψ R 0   exp ( i 4 π f λ ) ψ O ( λ f ν x + λ f ν x 0 , λ f ν y + λ f ν y 0 ) ,
F 4 ( ν x , ν y ) = i λ f ψ R 0   exp ( i 4 π f λ ) ψ O * ( λ f ν x + λ f ν x 0 , λ f ν y + λ f ν y 0 ) .
Δ ξ = Δ η = λ f Δ ν x = λ f Δ ν y = λ f L ,
R s = 1.22 λ f / L = 1.22 Δ ξ .
Δ z = ln ( 2 ) 2 π λ 2 Δ λ ,
Δ z = λ 2 N A 2 ,
S = 20   log   V s ,max σ n + 10   log   1 R s ,

Metrics